Disaggregation of component soil series on an Ohio County soil survey map using possibilistic decision trees

Geoderma ◽  
2014 ◽  
Vol 213 ◽  
pp. 334-345 ◽  
Author(s):  
S.K. Subburayalu ◽  
I. Jenhani ◽  
B.K. Slater
Agropedology ◽  
2019 ◽  
Vol 28 (2) ◽  
Author(s):  
G. Tiwari ◽  
◽  
A. Jangir ◽  
R. P. Sharma ◽  
B. Dash ◽  
...  

Detailed soil survey (1:10000 scale) was carried out using base map prepared from satellite data (IRS-P6 LISS IV and Cartosat-1) and Digital Elevation Models (DEM) in conjunction with Survey of India (SOI) Toposheets of 1:50000 scale in Valia block, Bharuch district of Gujarat. On the basis of landform, slope, land use/land cover and ground truth, six landscape ecological Units (LEUs) were delineated and six soil series were identified in the block. Five soil series occur on alluvial plain (cover 66.16 %) and one soil series occupies pediplain 27.61 %. These series were mapped into ten soil mapping units as phases of soil series. The representative pedons of alluvial plain were moderately deep to very deep and their sand, silt and clay content ranged from 8.2 to 44.4, 9.8 to 40.2 and 43.8 to 55.6 per cent, respectively. These pedons were neutral to strongly alkaline (pH 6.8 - 9.7), non-saline with low to high organic carbon (0.18 – 1.2 %) content, low to high calcium carbonate (5.9 - 26.6 %) and high CEC [>35 cmol (p+) kg-1]. Exchangeable complex of these pedons were dominated by Ca2+ followed by Mg2+, Na+ and K+ cations with high base saturation (72.0 to 99. 4 %). Soils were classified as Vertic Haplustepts, Typic Haplusterts, Typic Calciustepts, Typic Haplustepts and Sodic Haplusterts. The representative pedon of pediplains was shallow, dark brown (7.5YR3/2), clayey, strongly alkaline (pH>8.5), non-saline (<2 dSm-1) and had moderate organic carbon (0.50-0.75 %) and calcium carbonate (5-15 %) with high CEC [>35 cmol (p+) kg-1] and classified as Lithic Haplustepts. The soils were evaluated for their suitability for commonly grown crops (cotton, pigeon pea, wheat and chick pea) and mapping unit 2 and 4 were highly suitable for cotton cultivation and other were moderately to marginal suitable for other crops.


Author(s):  
Rajendra Hegde ◽  
M. B. Mahendra Kumar ◽  
K. V. Niranjana ◽  
K. V. Seema ◽  
B. A. Dhanorkar

Aims: The detailed survey of the microwatershed was carried out by using digitized cadastral map as a base. The objective of the investigation was undertaken to characterize and classify the soils of Harve-1 microwatershed of Chamarajanagar district, Karnataka. Place and Duration of Study: soil survey was done and soil samples were collected from Harve-1 microwatershed of Chamarajanagar district in the year 2016. The laboratory characterization and soil classification work was done at National Bureau of soil survey and land use planning, Regional centre Hebbal, Bangalore, Karnataka. Methodology: Using Cartosat-1 and LISS-IV merged satellite data at the scale of 1:7920 were used in conjunction with the cadastral map as a base. Soil profiles were exposed and location of soil profiles was recorded using GPS and studied from each landform for describing morphological characteristic as per the guidelines given in USDA soil survey manual (Soil Survey Staff 2014). Based on the soil-site characteristics, ten soil series were identified using the method employed by Reddy (2006). Horizon wise soil samples were collected, processed and analysed for various properties by adopting standard procedure. Results: The study showed that, the soils were moderately shallow to moderately deep in depth. The colour of the soils varied from dark red to dark reddish brown. Texture of the soil varied from sandy loam to sandy clay loam in surface and sandy clay loam to sandy clay in subsurface. The structure was weak medium sub-angular blocky to moderate medium sub-angular blocky throughout the profile in all series. The consistency of majority of the soils were friable, slightly sticky and slightly plastic in surface and friable, moderately sticky and moderately plastic in subsurface. Soil reaction varied from slightly acidic to alkaline (5.70 to 8.18) in nature. Organic carbon content of the soils was low to high (0.20 to 1.24 per cent). Calcium and magnesium are dominant exchangeable cations followed by sodium and potassium. The CEC of the soils ranged from 3.17 to 25.76 cmol (p+) kg-1. Major proportion of soil series in the microwatershed belonged to the order of Alfisols (Paralitic Rhodustalfs, Typic Rhodustalfs, Typic Haplustalfs and Rhodic Paleustalfs) except Honnenahalli (HNH) series belong to the order of Inceptisols (Typic Haplustepts). Conclusion: The soils of the microwatershed were comes under the order of alfisols and inceptisols. This generated information can help the researchers, farmers and planners to manage the natural resources for future planning and also to achieve sustainable productivity.


2002 ◽  
Vol 18 (3) ◽  
pp. 157-163 ◽  
Author(s):  
Sonneveld M.P.W.* ◽  
J. Bouma ◽  
A. Veldkamp

1989 ◽  
Vol 69 (1) ◽  
pp. 1-16 ◽  
Author(s):  
G. M. COEN ◽  
C. Wang

Vertical saturated hydraulic conductivity, as an important soil characteristic, should be part of the information displayed on soil survey maps. As rigorous measurement techniques are relatively slow and cumbersome, a rapid procedure for estimating vertical saturated hydraulic conductivity of soils using soil morphology was tested for Prairie conditions. Morphological estimates of vertical saturated hydraulic conductivity were compared to field measurements using an air entry permeameter for 36 sites representing 25 soil series. Eighty-three percent of the estimated values were within one saturated hydraulic conductivity class of the mean measured value. It was concluded that morphological observations are sufficiently accurate to allow field characterization of pedons. In Alberta, in Chernozemic areas, management procedures do not appear to modify strongly the saturated hydraulic conductivity. This in turn allows useful predictions of saturated hydraulic conductivity to be related to soil series concepts and therefore allows extrapolation to manageable tracts of land using map unit concepts. Key words: Saturated hydraulic conductivity, soil morphology, Alberta, estimating


2011 ◽  
Vol 68 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Elvio Giasson ◽  
Eliana Casco Sarmento ◽  
Eliseu Weber ◽  
Carlos Alberto Flores ◽  
Heinrich Hasenack

When soil surveys are not available for land use planning activities, digital soil mapping techniques can be of assistance. Soil surveyors can process spatial information faster, to assist in the execution of traditional soil survey or predict the occurrence of soil classes across landscapes. Decision tree techniques were evaluated as tools for predicting the ocurrence of soil classes in basaltic steeplands in South Brazil. Several combinations of types of decicion tree algorithms and number of elements on terminal nodes of trees were compared using soil maps with both original and simplified legends. In general, decision tree analysis was useful for predicting occurrence of soil mapping units. Decision trees with fewer elements on terminal nodes yield higher accuracies, and legend simplification (aggregation) reduced the precision of predictions. Algorithm J48 had better performance than BF Tree, RepTree, Random Tree, and Simple Chart.


1986 ◽  
Vol 66 (1) ◽  
pp. 37-44 ◽  
Author(s):  
J. A. McKEAGUE ◽  
G. C. TOPP

Soil drainage groups assigned on the basis of soil survey information were evaluated against measured saturated hydraulic conductivity (Ksat) data for nine soils in Ontario. The drainage groups used in the drainage guide for Ontario, are based mainly on assumed relationships between soil texture and the capacity of the soil to transmit water.Measured Ksat values were incompatible with the drainage groups assigned to at least four of the nine soils. For the soils tested, there was very little relationship between texture and Ksat. Structure, including porosity, had a major influence on Ksat, and near-surface structure is influenced greatly by land use. Thus, general interpretations of the drainage characteristics of soil series have serious limitations. The usefulness of soil survey information for interpretation of soil drainage could be increased by improved description of soil morphology and by reliable estimates of Ksat during mapping. Such estimates can be based on morphology if they are regularly recalibrated by measurement. Key words: Hydraulic conductivity, tile drainage, texture, soil morphology


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Luiz H. Moro Rosso ◽  
Andre F. de Borja Reis ◽  
Adrian A. Correndo ◽  
Ignacio A. Ciampitti

Abstract Objectives This data article aims to introduce the “XPolaris” R-package, designed to facilitate access to detailed soil data at any geographical location within the contiguous United States (CONUS). Without the need of advanced R-programming skills, XPolaris enables users to convert raster data from the POLARIS database into traditional spreadsheet format [i.e., Comma-Separated Values (CSV)] for further data analyses. Data description The core of this publication is a code-tutorial envisioned to assist users in retrieving soil raster data within the CONUS. All data is sourced from the POLARIS database, a 30-m probabilistic map of soil series and different soil properties [Chaney et al. Geoderma 274:54, 2016, Chaney et al. Water Resour Res 55:2916, 2019]. POLARIS represents an optimization of the Soil Survey Geographic (SSURGO) database, circumventing issues of spatial disaggregation, harmonizing, and filling spatial gaps. POLARIS was constructed using a machine learning algorithm, the Disaggregation and Harmonisation of Soil Map Units Through Resampled Classification Trees (DSMART-HPC) [Odgers et al. Geoderma 214:91, 2014]. Although the data is easily accessible in a raster format, retrieving large amounts of data can be time-consuming or require advanced programming skills.


Author(s):  
D. Weindorf ◽  
B. Rinard ◽  
S. Johnson ◽  
B. Haggard ◽  
J. McPherson ◽  
...  

A high resolution survey was conducted of surface soil samples at Capulin Volcano National Monument in northeastern New Mexico, USA. Composited grid samples were collected and processed for physicochemical data. Brief site descriptions were made at each sampling location. Several departures from established USDA-NRCS SSURGO soils data were noted. Localized discrepancies in soil texture, slope class, elevation and soil pH were readily apparent in the data. Either the range of characteristics of soils mapped at the monument needs to be expanded, or new soil series should be utilized at the monument to reflect the differences observed.


Author(s):  
V. Ramamurthy ◽  
D. Mamatha ◽  
K.V. Niranjan ◽  
R. Vasundhara ◽  
K. Ranjitha ◽  
...  

Soil - crop suitability studies provide information on choice of crops to be grown on best suited soil unit for maximizing crop production per unit of land, labour and inputs. Soil-site suitability evaluation for identifying potential areas of pigeon pea (Cajanus cajan) was conducted at 1:8000 scale in Basavanagiri of Mysore district, Karnataka. Detailed soil survey of study area was carried out using cadastral map and four soil series mapped with 23 soil-mapping units. The results showed that 22 per cent of total area covering four mapping units of Bg 3 soil series is highly suitable for growing pigeon pea. Whereas, sixteen units covering 122 ha is moderately suitable and two mapping units of Bg1soil series are found not suitable for pigeon pea cultivation. Soil depth, topography, effective rooting depth and gravelliness found to be major limitations for pigeon pea production in the study area.


Sign in / Sign up

Export Citation Format

Share Document