The role of biochar in alleviating soil drought stress in urban roadside greenery

Geoderma ◽  
2021 ◽  
Vol 404 ◽  
pp. 115223
Author(s):  
You Jin Kim ◽  
Junge Hyun ◽  
Sin Yee Yoo ◽  
Gayoung Yoo
Keyword(s):  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Seyed Morteza Zahedi ◽  
Faezeh Moharrami ◽  
Saadat Sarikhani ◽  
Mohsen Padervand

Abstract Drought is an important environmental stress that has negative effects on plant growth leading to a reduction in yield. In this study, the positive role of nanoparticles of SiO2, Se, and Se/SiO2 (SiO2-NPs, Se-NPs and Se/SiO2-NPs) has been investigated in modulating negative effects of drought on the growth and yield of strawberry plants. Spraying of solutions containing nanoparticles of SiO2, Se, and Se/SiO2 (50 and 100 mg L−1) improved the growth and yield parameters of strawberry plants grown under normal and drought stress conditions (30, 60, and 100%FC). Plants treated with Se/SiO2 (100 mg L−1) preserved more of their photosynthetic pigments compared with other treated plants and presented higher levels of key osmolytes such as carbohydrate and proline. This treatment also increased relative water content (RWC), membrane stability index (MSI) and water use efficiency (WUE). In addition, exogenous spraying of Se/SiO2 increased drought tolerance through increasing the activity of antioxidant enzymes including catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and superoxide dismutase (SOD) as well as decreasing lipid peroxidation and hydrogen peroxide (H2O2) content. Increase in biochemical parameters of fruits such as anthocyanin, total phenolic compounds (TPC), vitamin C and antioxidant activity (DPPH) in strawberry plants treated with Se/SiO2 under drought stress revealed the positive effects of these nanoparticles in improving fruit quality and nutritional value. In general, our results supported the positive effect of the application of selenium and silicon nanoparticles, especially the absolute role of Se/SiO2 (100 mg L−1), on the management of harmful effects of soil drought stress not only in strawberry plants, but also in other agricultural crops.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 261
Author(s):  
Md. Mahadi Hasan ◽  
Milan Skalicky ◽  
Mohammad Shah Jahan ◽  
Md. Nazmul Hossain ◽  
Zunaira Anwar ◽  
...  

In recent years, research on spermine (Spm) has turned up a lot of new information about this essential polyamine, especially as it is able to counteract damage from abiotic stresses. Spm has been shown to protect plants from a variety of environmental insults, but whether it can prevent the adverse effects of drought has not yet been reported. Drought stress increases endogenous Spm in plants and exogenous application of Spm improves the plants’ ability to tolerate drought stress. Spm’s role in enhancing antioxidant defense mechanisms, glyoxalase systems, methylglyoxal (MG) detoxification, and creating tolerance for drought-induced oxidative stress is well documented in plants. However, the influences of enzyme activity and osmoregulation on Spm biosynthesis and metabolism are variable. Spm interacts with other molecules like nitric oxide (NO) and phytohormones such as abscisic acid, salicylic acid, brassinosteroids, and ethylene, to coordinate the reactions necessary for developing drought tolerance. This review focuses on the role of Spm in plants under severe drought stress. We have proposed models to explain how Spm interacts with existing defense mechanisms in plants to improve drought tolerance.


Author(s):  
Mervat Sh. Sadak ◽  
Aboelfetoh M. Abdalla ◽  
Ebtihal M. Abd Elhamid ◽  
M. I. Ezzo

PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0135391 ◽  
Author(s):  
Eva Fleta-Soriano ◽  
Marta Pintó-Marijuan ◽  
Sergi Munné-Bosch
Keyword(s):  

2015 ◽  
Vol 96 ◽  
pp. 83-89 ◽  
Author(s):  
M.S. Sujith Kumar ◽  
Kishwar Ali ◽  
Anil Dahuja ◽  
Aruna Tyagi

2007 ◽  
Vol 145 (3) ◽  
pp. 853-862 ◽  
Author(s):  
Marina Efetova ◽  
Jürgen Zeier ◽  
Markus Riederer ◽  
Chil-Woo Lee ◽  
Nadja Stingl ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Minjie Deng ◽  
Yabing Cao ◽  
Zhenli Zhao ◽  
Lu Yang ◽  
Yanfang Zhang ◽  
...  

Understanding the role of miRNAs in regulating the molecular mechanisms responsive to drought stress was studied in Paulownia “yuza 1.” Two small RNA libraries and two degradome libraries were, respectively, constructed and sequenced in order to detect miRNAs and their target genes associated with drought stress. A total of 107 miRNAs and 42 putative target genes were identified in this study. Among them, 77 miRNAs were differentially expressed between drought-treated Paulownia “yuza 1” and the control (60 downregulated and 17 upregulated). The predicted target genes were annotated using the GO, KEGG, and Nr databases. According to the functional classification of the target genes, Paulownia “yuza 1” may respond to drought stress via plant hormone signal transduction, photosynthesis, and osmotic adjustment. Furthermore, the expression levels of seven miRNAs (ptf-miR157b, ptf-miR159b, ptf-miR398a, ptf-miR9726a, ptf-M2153, ptf-M2218, and ptf-M24a) and their corresponding target genes were validated by quantitative real-time PCR. The results provide relevant information for understanding the molecular mechanism of Paulownia resistance to drought and reference data for researching drought resistance of other trees.


2017 ◽  
Vol 213 ◽  
pp. 199-208 ◽  
Author(s):  
Giacomo Puglielli ◽  
Susana Redondo-Gómez ◽  
Loretta Gratani ◽  
Enrique Mateos-Naranjo
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document