How do the chemical characteristics of organic matter explain differences among its determinations in calcareous soils?

Geoderma ◽  
2022 ◽  
Vol 406 ◽  
pp. 115454
Author(s):  
Fernando Visconti ◽  
Mª Gema Jiménez ◽  
José Miguel de Paz
2016 ◽  
Vol 869 ◽  
pp. 112-115 ◽  
Author(s):  
Francisca Pereira de Araújo ◽  
Edson Cavalcanti Silva Filho ◽  
João Sammy Nery de Souza ◽  
Josy Anteveli Osajima ◽  
Marcelo Barbosa Furtini

Soil-cement bricks are good examples of environmentally friendly products. This brick is the combination of soil with compacted cement with no combustion in its production. In this work the physical chemical characteristics of the soil from Piaui for producing this material were investigated. Samples of the soil were collected in three potteries from the county of Bom Jesus and pH analysis were carried out, as well as the rate of organic matter, texture, particle density, limits of liquidity and plasticity rates. The results have shown that the soils have acid tones (pH 5,49 a 6,11), which can be neutralized by adding cement, and organic matter percentages up to 1%. The samples have shown predominantly clay-rich textures with adequate plasticity limits, however, values of liquidity limits and particle density above recommended. Altogether, these soils tend to present viability concerning soil-cement brick production, provided that corrections with additives are made in order to minimize this effect.


2016 ◽  
Vol 41 (4) ◽  
pp. 735-757 ◽  
Author(s):  
NC Shil ◽  
MA Saleque ◽  
MR Islam ◽  
M Jahiruddin

Laboratory studies on soil fertility evaluation was carried out across major agroecological zones (AEZs) of Bangladesh to know the nutrient status of soils and to relate those with soil properties like pH, organic matter, CEC, and clay content. Thirty five composite soil samples were collected from intensive crop growing sites, which covered 17 AEZs of Bangladesh. After proper processing, the samples were analyzed for texture, pH, organic carbon, CEC, exchangeable cations (K, Ca, Mg and Na), total N, available P and S following standard methods. The textural class of the soils collected from AEZ 12 and 13 appeared to be mostly clay. Clay loam soil was found in AEZ 4, 8, 9, 11, 25 and 28. Loamy soil was seen in AEZ 1 while AEZ 22, 23 and 29 were mostly sandy textured. The results revealed that 65.7% of the tested soil was acidic while 25.7% was alkaline in nature. All the tested soils showed lower pHKCl compared to pHH2O thus possessed negative charge. About 68.6% of the collected soils contained low (1.10-1.70%) level of organic matter, 25.7% soils retained it at medium level (1.71-2.40) and 5.7% soils at very low level (<1.0%). All the tested soils appeared to be deficient (< 0.12%) in nitrogen content. 68.6% soil samples had the low level of available P while only 8.6% retained it an optimum amount. About 80% of the tested soils contained low level of available S (7.9- 14.7 mg kg -1) although coastal regions soils hold higher amount of available S. High CEC (20-38 cmol kg-1) was found in clay rich soils of AEZ 10, 11, 12, and 13. Study revealed that 40% of the collected soils were very low, 31.4% were low, 8.6% each of medium and optimum, and 11.4% contained high level of exchangeable K. The calcareous soils (AEZ 10, 11, 12 and 13) contained very high level of Ca. Non calcareous soils also showed fairly good level of Ca content except AEZ 1, 3, 23 and 29. Sandy textured soils of greater Dinajpur, Rangpur, Moulvibazar showed lower level of exchangeable Mg. About 86% of the tested soils had the lower (< 2%) potassium saturation percentage (KSP), which needs K application for sustainable crop production. Estimate showed that 44% variability for CEC may be attributed by clay content and the relationship was significant (p = 0.05). Again, 50.4 and 65.6% variability in exchangeable K and Mg, respectively may be governed by clay content of the soils, while such relationship for Ca was non-significant. CEC may contribute 62.2, 92.3 and 83.9% variability for exchangeable K, Ca and Mg content in soils, respectively. The fertility status of most of the studied soils (except AEZ 10, 12, 13 and to some extent 11) appeared to be low to very low, which demand judicious management in order to achieve food security and to conserve the soil fertility.Bangladesh J. Agril. Res. 41(4): 735-757, December 2016


Author(s):  
Muhammad Abbas AZIZ ◽  
Hamaad Raza AHMAD ◽  
Dennis L. CORWIN ◽  
Muhammad SABIR ◽  
Khalid Rehman HAKEEM ◽  
...  

Continuous irrigation of soils with untreated effluents can result in the accumulation and translocation of some metals in the soils and plants. Application of farmyard manure (FYM) to such soils may increase or decrease their availability and retention time. Calcareous soils contaminated with 100, 200, and 400mg kg–1 Ni, Zn, and Pb as chloride salts were used, and farmyard manure added (40g kg–1 for 90 days) with moisture contents at field capacity. Soil samples were drawn at 30 day intervals, and metals extracted with (AB-DTPA) C14H23NO3O10. With FYM application of 400 mg kg–1, Ni availability increased from 179 (day 30) to 240 mg kg–1(day 90); Zn from 163 (day 30) to 230 mg kg–1 (day 90), but, Pb decreased from 214 to 161 mg kg–1. FYM forms multi-dentate complex which greatly enhances the Ni and Zn solubility, and organic matter immobilizes Pb in the soil.


2012 ◽  
Vol 25 (1) ◽  
pp. 11-18 ◽  
Author(s):  
Juliana Vanir De Souza Carvalho ◽  
Eduardo De Sá Mendonça ◽  
Newton La Scala ◽  
César Reis ◽  
Efrain Lázaro Reis ◽  
...  

AbstractPolar Regions are the most important soil carbon reservoirs on Earth. Monitoring soil carbon storage in a changing global climate context may indicate possible effects of climate change on terrestrial environments. In this regard, we need to understand the dynamics of soil organic matter in relation to its chemical characteristics. We evaluated the influence of chemical characteristics of humic substances on the process of soil organic matter mineralization in selected Maritime Antarctic soils. A laboratory assay was carried out with soils from five locations from King George Island. We determined the contents of total organic carbon, oxidizable carbon fractions of soil organic matter, and humic substances. Two in situ field experiments were carried out during two summers, in order to evaluate the CO2-C emissions in relation to soil temperature variations. The overall low amounts of soil organic matter in Maritime Antarctic soils have a low humification degree and reduced microbial activity. CO2-C emissions showed significant exponential relationship with temperature, suggesting a sharp increase in CO2-C emissions with a warming scenario, and Q10 values (the percentage increase in emission for a 10°C increase in soil temperature) were higher than values reported from elsewhere. The sensitivity of the CO2-C emission in relation to temperature was significantly correlated with the humification degree of soil organic matter and microbial activity for Antarctic soils.


Author(s):  
Songyan Li ◽  
Meng Li ◽  
Guoxi Wang ◽  
Xiaolei Sun ◽  
Beidou Xi ◽  
...  

Abstract Background Exploration of composition and chemical characteristics of soil dissolved organic matter (DOM) is significant to understand its biogeochemical role in terrestrial ecosystems. A total of 43 cropped and 16 natural soils (0–20 cm) under four soil types (cinnamon, chernozem, red and paddy soils) across China were collected to investigate the spectral characteristics of DOM using UV–Vis and 3D-EEM spectroscopy. Results The chernozem soils exhibited the highest aromaticity and humification degree among the four soil types. Ranges of biological index (BIX, 0.53–1.17) and fluorescence index (FI, 1.55–2.10) were found in the investigated DOM, showing joint contribution from allochthonous and autochthonous sources. Higher BIX and FI in the DOM of the paddy and red soils indicated a greater reliance on autochthonous sources for these two soil types. The cropped soils showed no significant differences in chemical characteristics and sources from the natural soils for the cinnamon, chernozem and red soils. UVA (16.2–47.9%) and UVC fulvic-like substances (15.4–40.5%) were the prevailing DOM components, which were highest in the chernozem soils. Additionally, the cropped soils had a higher proportion of humic-like substances than the natural soils in the DOM. Conclusions Both soil type and land-use strongly affected the chemical characteristics of soil DOM, but only soil type had an impact on the DOM composition for the collected soils. These findings may contribute to the prediction of the biochemical behavior of soil DOM under different soil types and land-uses in terrestrial ecosystems.


Soil Research ◽  
1972 ◽  
Vol 10 (1) ◽  
pp. 35 ◽  
Author(s):  
FJ Roberts ◽  
BA Carbon

The hydrophobic organic skins on sand grains were resistant to removal by solvents such as cold water, concentrated acid, diethyl ether, ethanol, benzene, chloroform, and acetone. Prolonged treatment with hot diethyl ether, ethanol, and benzene removed part of the coating. Treatment with dilute solutions of alkali removed the skin as suspended particles. Compounds within the very stable humic fraction of the soil organic matter appeared to be mainly responsible for water repellence in soils. Deposits of fresh organic materials could also produce water repellent properties.


RSC Advances ◽  
2018 ◽  
Vol 8 (58) ◽  
pp. 33138-33148 ◽  
Author(s):  
Xiaowei Li ◽  
Qingqing Mei ◽  
Xiaofang Yan ◽  
Bin Dong ◽  
Xiaohu Dai ◽  
...  

The chemical characteristics of the refractory organic matter in anaerobic and aerobic digestates are hardly known although they are significant for further improving the degradation of organic matter during sludge digestion.


Sign in / Sign up

Export Citation Format

Share Document