scholarly journals A Survey on Energy Efficient Routing Techniques in WSNs Focusing IoT Applications and Enhancing Fog Computing Paradigm

Author(s):  
Loveleen Kaur ◽  
Rajbir Kaur
Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3868 ◽  
Author(s):  
Manuel Suárez-Albela ◽  
Paula Fraga-Lamas ◽  
Tiago Fernández-Caramés

The latest Internet of Things (IoT) edge-centric architectures allow for unburdening higher layers from part of their computational and data processing requirements. In the specific case of fog computing systems, they reduce greatly the requirements of cloud-centric systems by processing in fog gateways part of the data generated by end devices, thus providing services that were previously offered by a remote cloud. Thanks to recent advances in System-on-Chip (SoC) energy efficiency, it is currently possible to create IoT end devices with enough computational power to process the data generated by their sensors and actuators while providing complex services, which in recent years derived into the development of the mist computing paradigm. To allow mist computing nodes to provide the previously mentioned benefits and guarantee the same level of security as in other architectures, end-to-end standard security mechanisms need to be implemented. In this paper, a high-security energy-efficient fog and mist computing architecture and a testbed are presented and evaluated. The testbed makes use of Transport Layer Security (TLS) 1.2 Elliptic Curve Cryptography (ECC) and Rivest-Shamir-Adleman (RSA) cipher suites (that comply with the yet to come TLS 1.3 standard requirements), which are evaluated and compared in terms of energy consumption and data throughput for a fog gateway and two mist end devices. The obtained results allow a conclusion that ECC outperforms RSA in both energy consumption and data throughput for all the tested security levels. Moreover, the importance of selecting a proper ECC curve is demonstrated, showing that, for the tested devices, some curves present worse energy consumption and data throughput than other curves that provide a higher security level. As a result, this article not only presents a novel mist computing testbed, but also provides guidelines for future researchers to find out efficient and secure implementations for advanced IoT devices.


2021 ◽  
Vol 23 (07) ◽  
pp. 1499-1508
Author(s):  
Bhukya Suresh ◽  
◽  
G Shyama Chandra Prasad ◽  

Wireless Sensor Networks (WSNs) are a resource-constrained network class recognized as a major energy consumer. Wireless sensor technologies are used in many commercialized industrial automation processes and other real-world applications. The WSN protocol is well-suited to harsh situations where deployment is difficult or impossible, such as the battlefield, a toxic chemical plant, the cloud, fog computing, and the Internet of Things, but not in a high-temperature network infrastructure environment. WSNs have introduced various Energy-Efficient Routing Protocols based on network (NW) organization and protocols in recent years. Various WSN routing options for energy efficiency are explored in this work. The WSN Energy Efficient Routing Protocol is compared to other routing systems. We also compare and investigate better WSN routing algorithms for cloud computing, fog computing, and the Internet of Things.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 500
Author(s):  
E. Laxmi Lydia ◽  
A. Arokiaraj Jovith ◽  
A. Francis Saviour Devaraj ◽  
Changho Seo ◽  
Gyanendra Prasad Joshi

Presently, a green Internet of Things (IoT) based energy aware network plays a significant part in the sensing technology. The development of IoT has a major impact on several application areas such as healthcare, smart city, transportation, etc. The exponential rise in the sensor nodes might result in enhanced energy dissipation. So, the minimization of environmental impact in green media networks is a challenging issue for both researchers and business people. Energy efficiency and security remain crucial in the design of IoT applications. This paper presents a new green energy-efficient routing with DL based anomaly detection (GEER-DLAD) technique for IoT applications. The presented model enables IoT devices to utilize energy effectively in such a way as to increase the network span. The GEER-DLAD technique performs error lossy compression (ELC) technique to lessen the quantity of data communication over the network. In addition, the moth flame swarm optimization (MSO) algorithm is applied for the optimal selection of routes in the network. Besides, DLAD process takes place via the recurrent neural network-long short term memory (RNN-LSTM) model to detect anomalies in the IoT communication networks. A detailed experimental validation process is carried out and the results ensured the betterment of the GEER-DLAD model in terms of energy efficiency and detection performance.


Information ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 42
Author(s):  
Rachid Zagrouba ◽  
Amine Kardi

This paper surveys the energy-efficient routing protocols in wireless sensor networks (WSNs). It provides a classification and comparison following a new proposed taxonomy distinguishing nine categories of protocols, namely: Latency-aware and energy-efficient routing, next-hop selection, network architecture, initiator of communication, network topology, protocol operation, delivery mode, path establishment and application type. We analyze each class, discuss its representative routing protocols (mechanisms, advantages, disadvantages…) and compare them based on different parameters under the appropriate class. Simulation results of LEACH, Mod-LEACH, iLEACH, E-DEEC, multichain-PEGASIS and M-GEAR protocols, conducted under the NS3 simulator, show that the routing task must be based on various intelligent techniques to enhance the network lifespan and guarantee better coverage of the sensing area.


Sign in / Sign up

Export Citation Format

Share Document