scholarly journals Self - assembled graphene aerogels for removal of methylene blue and copper from aqueous solutions

Author(s):  
Jiaxue Sun ◽  
Mengdie Yu ◽  
Runfeng Kang ◽  
Huimin Sun ◽  
Ya Zhang ◽  
...  
2021 ◽  
Author(s):  
Ahmed Esmail Shalan ◽  
M. Afifi ◽  
M.M. El-Desoky ◽  
M.k Ahmed

Cellulose acetate nanofiber membranes containing hydroxyapatite co-doped with Ag/Fe were efficaciously attained through the electrospinning technique. Different molar ratio compositions of hydroxyapatite co-doped with Ag/Fe in the structure of the...


2017 ◽  
Vol 14 (9) ◽  
pp. 1959-1968 ◽  
Author(s):  
A. A. Mohammadi ◽  
A. Alinejad ◽  
B. Kamarehie ◽  
S. Javan ◽  
A. Ghaderpoury ◽  
...  

2003 ◽  
Vol 21 (2) ◽  
pp. 189-198
Author(s):  
Sameer Al-Asheh ◽  
Fawzi Banat ◽  
Rana Saeidi ◽  
Salam Abu Zaid

As in Part I, non-activated (natural) and chemically activated oak shells were evaluated for their ability to remove phenol and Methylene Blue (as a typical dye component) from aqueous solutions. Batch adsorption experiments were conducted to investigate the effect of contact time, sorbent concentration, phenol concentration and the pH of the solution on the sorption process. Activated oak shells adsorbed more phenol than natural oak shells under the same conditions. A decrease in sorbent concentration or an increase in phenol concentration or solution pH resulted in an increase in phenol uptake by the oak shells. The uptake of Methylene Blue increased with decreasing sorbent concentration and with an increase in the dye concentration, but decreased significantly with solution pH. According to the fractional factorial design technique, the sorbent type employed (natural or activated) had the most significant influence on phenol or Methylene Blue uptake followed by sorbent concentration and then sorbate concentration. Interaction amongst the different operating variables played an important role in the uptake of phenol or Methylene Blue dye by the adsorbent considered.


2016 ◽  
Vol 75 (1) ◽  
pp. 106-114 ◽  
Author(s):  
Lucas Meili ◽  
Társila Santos da Silva ◽  
Daniely Carlos Henrique ◽  
João Inácio Soletti ◽  
Sandra Helena Vieira de Carvalho ◽  
...  

In this work, the potential of ouricuri (Syagrus coronata) fiber as a novel biosorbent to remove methylene blue (MB) from aqueous solutions was investigated. The fiber was prepared and characterized according to the fundamental features for adsorption. A 23 experimental design was used to evaluate the effects of adsorbent dosage (M), fiber diameter (D) and agitation (A) on the adsorption capacity. In the more adequate conditions, kinetic and equilibrium studies were performed. The experimental design results showed that M = 10 g L−1), D = 0.595 mm and A = 200 rpm were the more adequate conditions for MB adsorption. Based on the kinetic study, it was found that the adsorption process was fast, being the equilibrium was attained at about 5 min, with 90% of color removal. The isotherm was properly represented by the Sips model, and the maximum adsorption capacity was 31.7 mg g−1. In brief, it was demonstrated that ouricuri fiber is an alternative biosorbent to remove MB from aqueous media, taking into account the process efficiency and economic viewpoint.


Author(s):  
Linda Hevira ◽  
Zilfa ◽  
Rahmayeni ◽  
Joshua O. Ighalo ◽  
Hermansyah Aziz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document