Ouricuri (Syagrus coronata) fiber: a novel biosorbent to remove methylene blue from aqueous solutions

2016 ◽  
Vol 75 (1) ◽  
pp. 106-114 ◽  
Author(s):  
Lucas Meili ◽  
Társila Santos da Silva ◽  
Daniely Carlos Henrique ◽  
João Inácio Soletti ◽  
Sandra Helena Vieira de Carvalho ◽  
...  

In this work, the potential of ouricuri (Syagrus coronata) fiber as a novel biosorbent to remove methylene blue (MB) from aqueous solutions was investigated. The fiber was prepared and characterized according to the fundamental features for adsorption. A 23 experimental design was used to evaluate the effects of adsorbent dosage (M), fiber diameter (D) and agitation (A) on the adsorption capacity. In the more adequate conditions, kinetic and equilibrium studies were performed. The experimental design results showed that M = 10 g L−1), D = 0.595 mm and A = 200 rpm were the more adequate conditions for MB adsorption. Based on the kinetic study, it was found that the adsorption process was fast, being the equilibrium was attained at about 5 min, with 90% of color removal. The isotherm was properly represented by the Sips model, and the maximum adsorption capacity was 31.7 mg g−1. In brief, it was demonstrated that ouricuri fiber is an alternative biosorbent to remove MB from aqueous media, taking into account the process efficiency and economic viewpoint.

Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2218 ◽  
Author(s):  
Carlos Grande-Tovar ◽  
William Vallejo ◽  
Fabio Zuluaga

In this work, we synthesized chitosan grafted-polyacrylic acid (CS-g-PA) through surface-initiated atom transfer radical polymerization (SI-ATRP). We also studied the adsorption process of copper and lead ions onto the CS-g-PA surface. Adsorption equilibrium studies indicated that pH 4.0 was the best pH for the adsorption process and the maximum adsorption capacity over CS-g-PA for Pb2+ ions was 98 mg·g−1 and for Cu2+ it was 164 mg·g−1, while for chitosan alone (CS), the Pb2+ adsorption capacity was only 14.8 mg·g−1 and for Cu2+ it was 140 mg·g−1. Furthermore, the adsorption studies indicated that Langmuir model describes all the experimental data and besides, pseudo-second-order model was suitable to describe kinetic results for the adsorption process, demonstrating a larger kinetic constant of the process was larger for Pb2+ than Cu2+. Compared to other adsorbents reported, CS-g-PA had comparable or even superior adsorbent capacity and besides, all these results suggest that the new CS-g-PA polymers had potential as an adsorbent for hazardous and toxic metal ions produced by different industries.


2020 ◽  
Vol 10 (5) ◽  
pp. 1738
Author(s):  
Kay Thwe Aung ◽  
Seung-Hee Hong ◽  
Seong-Jik Park ◽  
Chang-Gu Lee

Polyacrylonitrile (PAN) fibers were prepared via electrospinning and were modified with diethylenetriamine (DETA) to fabricate surface-modified PAN fibers. The surface-modified PAN fibers were used to evaluate their adsorption capacity for the removal of Cu(II) from aqueous solutions. Batch adsorption experiments were performed to examine the effects of the modification process, initial concentration, initial pH, and adsorbent dose on the adsorption of Cu(II). Kinetic analysis revealed that the experimental data fitted the pseudo-second-order kinetic model better than the pseudo-first-order model. Adsorption equilibrium studies were conducted using the Freundlich and Langmuir isotherm models, and the findings indicated that the PAN fibers modified with 85% DETA presented the highest adsorption capacity for Cu(II) of all analyzed samples. Moreover, the results revealed that the Freundlich model was more appropriate than the Langmuir one for describing the adsorption of Cu(II) onto the modified fibers at various initial Cu(II) concentrations. The maximum adsorption capacity was determined to be 87.77 mg/g at pH 4, and the percent removal of Cu(II) increased as the amount of adsorbent increased. Furthermore, the surface-modified PAN fibers could be easily regenerated using NaOH solution. Therefore, surface-modified PAN fibers could be used as adsorbents for the removal of Cu(II) from aqueous solutions.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 657 ◽  
Author(s):  
Bogdan Pascu ◽  
Cristina Ardean ◽  
Corneliu Mircea Davidescu ◽  
Adina Negrea ◽  
Mihaela Ciopec ◽  
...  

The aim of this study is to investigate the silver recovery from aqueous solutions. There are a variety of recovery methods, such as hydrometallurgical, bio-metallurgical, cementation, reduction, electrocoagulation, electrodialysis, ion exchange, etc. Adsorption represents a convenient, environment friendly procedure, that can be used to recover silver from aqueous solutions. In this paper we highlight the silver adsorption mechanism on chitosan chemically modified with active groups, through kinetic, thermodynamic, and equilibrium studies. A maximum adsorption capacity of 103.6 mg Ag(I)/g of adsorbent for an initial concentration of 700 mg/L was noticed by using modified chitosan. Lower adsorption capacity has been noticed in unmodified chitosan—a maximum of 75.43 mg Ag(I)/g. Optimum contact time was 120 min and the process had a maximum efficiency when conducted at pH higher than 6. At the same time, a way is presented to obtain metallic silver from the adsorbent materials used for the recovery of the silver from aqueous solutions.


2020 ◽  
Vol 23 (10) ◽  
pp. 370-376
Author(s):  
Thamrin Azis ◽  
La Ode Ahmad ◽  
Keke Awaliyah ◽  
Laode Abdul Kadir

Research on the equilibrium and adsorption kinetics of methylene blue dye using tannin gel from the Tingi tree (Ceriops tagal) has been carried out. This study aims to determine the capacity and adsorption kinetics of tannin gel against methylene blue dye. Several parameters, such as the effect of contact time, pH, and methylene blue dye concentration on adsorption, were also studied. Based on the research results, the optimum adsorption process is a contact time of 30 minutes and a pH of 7. The adsorption capacity increased to a concentration of 80 mg/L with a maximum adsorption capacity (qm) of 49.261 mg/g. The adsorption process follows the pseudo-second-order adsorption kinetics model and the Langmuir isotherm model.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3054
Author(s):  
Yiming Zhou ◽  
Te Li ◽  
Juanli Shen ◽  
Yu Meng ◽  
Shuhua Tong ◽  
...  

This article reports effective removal of methylene blue (MB) dyes from aqueous solutions using a novel magnetic polymer nanocomposite. The core-shell structured nanosorbents was fabricated via coating Fe3O4 nanoparticles with a layer of hydrogel material, that synthesized by carboxymethyl cellulose cross-linked with poly(acrylic acid-co-acrylamide). Some physico-chemical properties of the nanosorbents were characterized by various testing methods. The nanosorbent could be easily separated from aqueous solutions by an external magnetic field and the mass fraction of outer hydrogel shell was 20.3 wt%. The adsorption performance was investigated as the effects of solution pH, adsorbent content, initial dye concentration, and contact time. The maximum adsorption capacity was obtained at neutral pH of 7 with a sorbent dose of 1.5 g L−1. The experimental data of MB adsorption were fit to Langmuir isotherm model and Pseudo-second-order kinetic model with maximum adsorption of 34.3 mg g−1. XPS technique was applied to study the mechanism of adsorption, electrostatic attraction and physically adsorption may control the adsorption behavior of the composite nanosorbents. In addition, a good reusability of 83.5% MB recovering with adsorption capacity decreasing by 16.5% over five cycles of sorption/desorption was observed.


Author(s):  
Nnaemeka John Okorocha ◽  
J. Josphine Okoji ◽  
Charles Osuji

The potential of almond leaves powder, (ALP) for the removal of Crystal violet (CV) and Congo red (CR) dyes from aqueous solution was investigated. The adsorbent (ALP) was characterized by FTIR and SEM analysis. Batch adsorption studies were conducted and various parameters such as contact time, adsorbent dosage, initial dye concentration, pH and temperature were studied to observe their effects in the dyes adsorption process. The optimum conditions for the adsorption of CV and CR dyes onto the adsorbent (ALP) was found to be: contact time (100mins), pH (10.0), temperature (343K) for an initial CV dye concentration of 50mg/L using adsorbent dose of 1.0g and contact time (100mins), pH (2.0), temperature (333K) for an initial CR dye concentration of 50mg/L using adsorbent dose 1.0g respectively. The experimental equilibrium adsorption data fitted best and well to the Freundlich isotherm model for both CV and CR dyes adsorption. The maximum adsorption capacity of ALP was found to be 22.96mg/g and 7.77mg/g for the adsorption of CV and CR dyes respectively. The kinetic data conformed to the pseudo-second-order kinetic model. Thermodynamic quantities such as Gibbs free energy (ΔG0), enthalpy (ΔH0) and entropy (ΔS0) were evaluated and the negative values of ΔG0obtained for both dyes indicate the spontaneous nature of the adsorption process while the positive values of ΔH0and ΔS0obtained indicated the endothermic nature and increased randomness during the adsorption process respectively for the adsorption of CV and CR onto ALP. Based on the results obtained such as good adsorption capacity, rapid kinetics, and its low cost, ALP appears to be a promising adsorbent material for the removal of CV and CR dye stuff from aqueous media.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2554
Author(s):  
Panlong Dong ◽  
Hailin Liu ◽  
Shengrui Xu ◽  
Changpo Chen ◽  
Suling Feng ◽  
...  

To remove the pollutant methylene blue (MB) from water, a sheet-like skeleton carbon derived from shaddock peels (SPACs) was prepared by NaOH activation followed by a calcination procedure under nitrogen protection in this study. Characterization results demonstrated that the as-prepared SPACs displayed a hierarchically porous structure assembled with a thin sheet-like carbon layer, and the surface area of SPAC-8 (activated by 8 g NaOH) was up to 782.2 m2/g. The as-prepared carbon material presented an ultra-fast and efficient adsorption capacity towards MB due to its macro-mesoporous structure, high surface area, and abundant functional groups. SPAC-8 showed ultrafast and efficient removal capacity for MB dye. Adsorption equilibrium was reached within 1 min with a removal efficiency of 99.6% at an initial concentration of 100 mg/g under batch adsorption model conditions. The maximum adsorption capacity for MB was up to 432.5 mg/g. A pseudo-second-order kinetic model and a Langmuir isotherm model described the adsorption process well, which suggested that adsorption rate depended on chemisorption and the adsorption process was controlled by a monolayer adsorption, respectively. Furthermore, column adsorption experiments showed that 96.58% of MB was removed after passing through a SPAC-8 packed column with a flow rate of 20 mL/min, initial concentration of 50 mg/L, and adsorbent dosage of 5 mg. The as-prepared adsorbent displays potential value in practical applications for dye removal due to its ultrafast and efficient adsorption capacity.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2241
Author(s):  
Rauf Foroutan ◽  
Seyed Jamaleddin Peighambardoust ◽  
Seyed Hadi Peighambardoust ◽  
Mirian Pateiro ◽  
Jose M. Lorenzo

Activated carbon prepared from lemon (Citrus limon) wood (ACL) and ACL/Fe3O4 magnetic nanocomposite were effectively used to remove the cationic dye of crystal violet (CV) from aqueous solutions. The results showed that Fe3O4 nanoparticles were successfully placed in the structure of ACL and the produced nanocomposites showed superior magnetic properties. It was found that pH was the most effective parameter in the CV dye adsorption and pH of 9 gave the maximum adsorption efficiency of 93.5% and 98.3% for ACL and ACL/Fe3O4, respectively. The Dubinin–Radushkevich (D-R) and Langmuir models were selected to investigate the CV dye adsorption equilibrium behavior for ACL and ACL/Fe3O4, respectively. A maximum adsorption capacity of 23.6 and 35.3 mg/g was obtained for ACL and ACL/Fe3O4, respectively indicating superior adsorption capacity of Fe3O4 nanoparticles. The kinetic data of the adsorption process followed the pseudo-second order (PSO) kinetic model, indicating that chemical mechanisms may have an effect on the CV dye adsorption. The negative values obtained for Gibb’s free energy parameter (−20 < ΔG < 0 kJ/mol) showed that the adsorption process using both types of the adsorbents was physical. Moreover, the CV dye adsorption enthalpy (ΔH) values of −45.4 for ACL and −56.9 kJ/mol for ACL/Fe3O4 were obtained indicating that the adsorption process was exothermic. Overall, ACL and ACL/Fe3O4 magnetic nanocomposites provide a novel and effective type of adsorbents to remove CV dye from the aqueous solutions.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5673
Author(s):  
Giannin Mosoarca ◽  
Simona Popa ◽  
Cosmin Vancea ◽  
Sorina Boran

In this research, dry bean pods husks (DBPH) were used as an adsorbent material after minimum processing (without chemical substances consumption and without thermal treatment) to remove methylene blue from aqueous solutions. The adsorbent surface characteristics were investigated using SEM and FTIR analysis. For maximum removal efficiency, several parameters that influence the dye adsorption were optimized using the Taguchi method. Equilibrium and kinetic modeling, along with thermodynamic studies, were conducted to elucidate the adsorption mechanism. Taguchi experimental design showed that the factor with the highest influence was the adsorbent dose, with a percent contribution established by the ANOVA analysis of 40.89%. Langmuir isotherm and pseudo-second order kinetic model characterizes the adsorption process. The maximum adsorption capacity, 121.16 (mg g−1), is higher than other similar adsorbents presented in scientific literature. Thermodynamic parameters indicate a spontaneous, favorable and endothermic adsorption process, and their values show that physical adsorption is involved in the process. The obtained results, and the fact that adsorbent material is inexpensive and easily available, indicate that DBPH powder represents an effective absorbent for treating waters containing methylene blue. Additionally, the Taguchi method is very suitable to optimize the process.


2019 ◽  
Vol 70 (5) ◽  
pp. 1586-1591
Author(s):  
Vasile Minzatu ◽  
Corneliu Mircea Davidescu ◽  
Mihaela Ciopec ◽  
Petru Negrea ◽  
Narcis Duteanu ◽  
...  

Environmental engineering have a great importance because is dealing with different fields, most important of them being water resource protection. It is well known that natural waters and especially groundwater contain dissolved substances, most of them unharmful for human and animal life, but some of them still potentially harmful. Ground waters containing dissolved arsenic and / or selenium are harmful and not suitable for human an animal life. Selenium represents a human life prerequisite microelement which can become toxic when higher quantities are ingested or accumulated. In comparison arsenic has an acute toxic effect over the human body even when very low quantities are ingested. In both cases the maximum amount were limited by OMS at 10 mg L-1. A new technique was used to produce an ecofriendly composite material by doping graphite with iron oxide, which was used for retention of arsenic and selenium from aqueous solutions. Synthesized material was characterized using SEM, EDX, XRD and DTA. Adsorption capacity and adsorption mechanism were established through equilibrium studies. Maximum adsorption capacity was 400 �g As(V) and 625 �g Se(VI) per gram of adsorbent.


Sign in / Sign up

Export Citation Format

Share Document