impact element
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 1)

One of efficiency indicators of grain grinders is grain granulometric composition. The basis of mixed fodder is crushed grain, the particles of which must have a leveled granulometric composition for subsequent mixing and obtaining a high-quality feed mixture. In agricultural production, hammer crushers are widely used, in which the destruction of grain occurs due to the impact of a hinged hammer. The main disadvantage of these crushers is that not the entire surface of the hammers is involved in grinding, thus reduces grinding process efficiency. A slightly different principle of material destruction is laid down in the basis of the proposed design of the shock-centrifugal grinder. Main work is performed by flat impact elements located on the rotor, which serve to accelerate crushed particles with subsequent impact of them on the bump elements. An important step in the design of new constructions of shock-centrifugal grinders is to determine size and location of the impact elements on the rotor, without which the grinding process is not possible. In the calculation method presented, the dependencies for determining the velocities and angles of a single particle flight from the surface of a flat impact element for its specified dimensions are proposed. Two variants of an impact element location on the rotor are considered and analyzed: radial and at an angle in the direction of rotor rotation. As a result of research carried out, it is noted that in the case of inclined position of an impact element on the rotor an increase in flight speed and flight angles change in crushed particles, which gives the opportunity to have a positive effect on grinding process.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Hong-Yu Jia ◽  
Xian-Lin Lan ◽  
Nan Luo ◽  
Jian Yang ◽  
Shi-Xiong Zheng ◽  
...  

To investigate the nonlinear impact effect of multispan simply supported beam bridges under strong earthquakes, firstly, the dynamic motion equation, the algorithm of its solution, and some pounding modelling methods are presented and the finite element model of a considered multispan simply supported railway beam bridge is established in the nonlinear finite element software of SAP2000 in which the primary nonlinear characteristics of the bearing and the impact element are considered herein. Secondly, the natural vibration characteristic of the considered railway bridge is analyzed to prepare for the subsequent parameter analysis. Finally, the influence of three nonlinear parameters, i.e., stiffness of impact element, separation gap width of expansion joint, and bearing stiffness, on impact responses of bridge structures is studied. The results show that the first several modes of multispan simply supported beam bridges are mainly longitudinal and vertical vibrations. Under longitudinal seismic excitations, the large longitudinal displacement response is induced possibly and results in the collision or even unseating of superstructures at the expansion joints and abutments. The influence of separation gap width between adjacent decks on the pounding effect of bridges is greater than that of collision stiffness originated from the pounding modelling element. The impact force and pounding number run up to the maximum conditional on the collision stiffness of 9.9 × 109 (N/m) and the separation gap width of 0.14 (m). The bearing stiffness affects significantly the displacement of the pier top and the cross-sectional internal force at the bottom of piers but has little effect on the collision force and number.


10.29007/275r ◽  
2018 ◽  
Author(s):  
Niraj Shinde ◽  
Devesh Soni

The seismic behavior of multi-storied building supported on Friction pendulum system (FPS) during impact with adjacent structure is examined. One lateral degree of freedom is considered at each floor, base mass and slider. Adjacent structure (i.e. retaining walls or entry bridges) is modeled as an impact element in form of spring and dashpot. The impact response of FPS bearing is studied under 60 records consisting of service level, design basis and maximum credible earthquakes. Newmark’s step by step iteration method is used to solve the differential equations of motion for the isolated system. The impact response of isolated building is studied under the variation of important system parameters such as size of gap and stiffness of impact element. To reduce the influence of impact a viscous damper is employed between the isolated building and adjacent structure. It is concluded that during impact with adjacent structure the superstructure acceleration and base shear increases while bearing displacement decreases. The employment of viscous damper shows considerable reduction in bearing displacements, base shear and impact force during DBE and MCE events. Further, the effects of impact are found critical if the superstructure is flexible and greater stiffness of impact element. The top floor acceleration increases with the isolation gap up to certain limit and again reduces with the increase in isolation gap.Keywords - Adjacent Structure; isolation; Sliding bearing; Viscous Damper; Gap effect; Floor acceleration; Impact


2016 ◽  
Vol 1 (2) ◽  
pp. 603-616 ◽  
Author(s):  
Marek Lampart ◽  
Jaroslav Zapoměl

AbstractThis paper concentrates on the vibrations attenuation of a rotor driven by a DC motor and its frame flexibly coupled with a baseplate by linear cylindrical helical springs and damped by an element that can work either in inertia or impact regime. The system oscillation is governed by three mutually coupled second-order ordinary differential equations. The nonlinear behaviour occurs if the impact regime is adjusted. The damping element operating in inertia mode reduces efficiently the oscillations amplitude only in a narrow frequency interval. In contrast, the damping device working in impact regime attenuates vibrations of the rotor frame in a wider range of the excitation frequencies and it can be easily extended if the clearances between the rotor casing and the damping element are controlled. The development of a computational procedure for investigation of vibration of a flexibly supported rotor and for its attenuation by the inertia and impact dampers; learning more on efficiency of the individual damping regimes; finding possibilities of extension of the frequency intervals of applicability of the damping device; and obtaining more information on the character of the vibration induced by impacts are the main contributions of this research work.


2015 ◽  
Vol 07 (03) ◽  
pp. 1550043 ◽  
Author(s):  
Marek Lampart ◽  
Jaroslav Zapoměl

The main aim of this paper is focused on vibration attenuation of the electromechanical system flexibly coupled with a baseplate and damped by an impact element. The model is constructed with three degrees of freedom in the mechanical oscillating part, two translational and one rotational. The system movement is described by three mutually coupled second-order ordinary differential equations, derived by the force balance method. Here, the most important nonlinearities are: stiffness of the support spring elements and internal impacts. The main results show the impact damping device attenuates vibrations of the rotor frame in a wide range of the excitation frequencies, that is wider then in the case when the impact element works only as an inertia damper without occurrence of any impacts.


2014 ◽  
Vol 06 (02) ◽  
pp. 1450016 ◽  
Author(s):  
MAREK LAMPART ◽  
JAROSLAV ZAPOMĚL

The main aim of this paper is to focus on analysis of the dynamic properties of the electromechanical system with an impact element. This model is constructed with three degrees of freedom in the mechanical oscillating part, two translational and one rotational, and is completed with an electric circuit. The mathematical model of the system is represented by three mutually coupled second-order ordinary differential equations. Here, the most important nonlinearities are: stiffness of the support spring elements and internal impacts. Several important results were obtained by means of computational simulations. The impacts considerably increase the number of resonance peaks of the frequency response characteristic. Character of the system motion strongly depends on the width of clearances between the impact body and the rotor frame and changes from simple periodic to close to chaotic or to periodic with a large number of ultraharmonic components. For a suitably chosen system parameters, a significant damping effect of the impact element was observed.


2013 ◽  
Vol 332 (4) ◽  
pp. 701-713 ◽  
Author(s):  
Marek Lampart ◽  
Jaroslav Zapoměl

Sign in / Sign up

Export Citation Format

Share Document