Experimental investigations on heat transfer to H2O/CO2 mixtures in supercritical region

Author(s):  
Hanlin Zhang ◽  
Haomin Wu ◽  
Dong Liu ◽  
Sha Li ◽  
Qiang Li
1984 ◽  
Vol 18 (4) ◽  
pp. 207-214 ◽  
Author(s):  
F. Mayinger ◽  
M. Scheldt

2015 ◽  
Vol 19 (5) ◽  
pp. 1769-1789 ◽  
Author(s):  
Volodymyr Rifert ◽  
Volodymyr Sereda

Survey of the works on condensation inside smooth horizontal tubes published from 1955 to 2013 has been performed. Theoretical and experimental investigations, as well as more than 25 methods and correlations for heat transfer prediction are considered. It is shown that accuracy of this prediction depends on the accuracy of volumetric vapor content and pressure drop at the interphase. The necessity of new studies concerning both local heat transfer coefficients and film condensation along tube perimeter and length under annular, stratified and intermediate regimes of phase flow was substantiated. These characteristics being defined will allow determining more precisely the boundaries of the flow regimes and the methods of heat transfer prediction.


2002 ◽  
Vol 29 (2) ◽  
pp. 2847-2854 ◽  
Author(s):  
Jiro Kasahara ◽  
Kouki Takazawa ◽  
Takakage Arai ◽  
Yu Tanahashi ◽  
Shingo Chiba ◽  
...  

Author(s):  
Xiaolong Yan ◽  
Wei Li ◽  
Weiyu Tang ◽  
Hua Zhu ◽  
Zhijian Sun ◽  
...  

Enhanced condensation heat transfer of two-phase flow on the horizontal tube side receives more and more concerns for its fundamentality and importance. Experimental investigations on convective condensation were performed respectively in different horizontal tubes: (i) a smooth tube (11.43 mm, inner diameter); (ii) a herringbone tube (11.43 mm, fin root diameter); and (iii) three enhanced surface (EHT) tubes (11.5 mm, equivalent inner diameter): 1EHT tube, 2EHT-1 tube and 2EHT-2 tubes. The surface of EHT tubes is enhanced by arrays of dimples with the background of petal arrays. Experiments were conducted at a saturation temperature of approximately 320 K; 0.8 inlet quality; and 0.2 outlet quality; 72–181 kg·m−2·s−1 mass flux using R22, R32 and R410A as the working fluid. The refrigerant R32 presents great heat transfer performance than R410A and R22 at low mass flux due to its higher latent heat of vaporization and larger thermal conductivity. The heat enhancement ratio of the herringbone tube is 2.72–2.82, rated number one. The primary dimples on the EHT tube increase turbulence and flow separation, and the secondary petal pattern produce boundary layer disruption to many smaller scale eddies. The 2EHT tubes are inferior to the 1EHT tube. A performance factor is used to evaluate the enhancement effect except of the contribution of area increase.


Author(s):  
Taher Schobeiri ◽  
Eric McFarland ◽  
Frederick Yeh

In this report the results of aerodynamic and heat transfer experimental investigations performed in a high Reynolds number turbine cascade test facility are analyzed. The experimental facility simulates the high Reynolds number flow conditions similar to those encountered in the space shuttle main engine. In order to determine the influence of Reynolds number on aerodynamic and thermal behavior of the blades, heat transfer coefficients were measured at various Reynolds numbers using liquid crystal temperature measurement technique. Potential flow calculation methods were used to predict the cascade pressure distributions. Boundary layer and heat transfer calculation methods were used with these pressure distributions to verify the experimental results.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 6004
Author(s):  
Gianpiero Colangelo ◽  
Noemi Francesca Diamante ◽  
Marco Milanese ◽  
Giuseppe Starace ◽  
Arturo de Risi

In this study, several experimental investigations on the effects of nanofluids on the convective heat transfer coefficient in laminar and turbulent conditions were analyzed. The aim of this work is to provide an overview of the thermal performance achieved with the use of nanofluids in various experimental systems. This review covers both forced and natural convection phenomena, with a focus on the different experimental setups used to carry out the experimental campaigns. When possible, a comparison was performed between different experimental campaigns to provide an analysis of the possible common points and differences. A significant increase in the convective heat transfer coefficient was found by using nanofluids instead of traditional heat transfer fluids, in general, even with big data dispersion from one case to another that depended on boundary conditions and the particular experimental setup. In particular, a general trend shows that once a critic value of the Reynolds number or nanoparticle concentrations is reached, the heat transfer performance of the nanofluid decreases or has no appreciable improvement. As a research field still under development, nanofluids are expected to achieve even higher performance and their use will be crucial in many industrial and civil sectors to increase energy efficiency and, thus, mitigate the environmental impact.


Sign in / Sign up

Export Citation Format

Share Document