scholarly journals Design and performance of four port MIMO antenna for IOT applications

ICT Express ◽  
2021 ◽  
Author(s):  
R. Nagendra ◽  
S. Swarnalatha
Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7909
Author(s):  
Saminathan Thiruvenkadam ◽  
Eswaran Parthasarathy ◽  
Sandeep Kumar Palaniswamy ◽  
Sachin Kumar ◽  
Lulu Wang

This article presents a quad-band multiple-input-multiple-output (MIMO) antenna for the Internet of Things (IoT) applications. The proposed antenna consists of four quarter-wavelength asymmetrical meandered radiators, microstrip feed lines, and modified ground planes. The antenna elements are arranged in a chiral pattern to improve isolation between them, with two radiators and two ground planes placed on the front side of the substrate and the other two on the back side. The MIMO antenna has an operating bandwidth (S11 ≤ −10 dB) of 1.76–1.84 GHz, 2.37–2.56 GHz, 3.23–3.68 GHz, and 5.34–5.84 GHz, covering GSM, WLAN, WiMAX, and 5G frequency bands. The isolation between the radiating elements is greater than 18 dB in the operating bands. The peak gain of the antenna is 3.6 dBi, and the envelope correlation coefficient (ECC) is less than 0.04. Furthermore, the proposed antenna is validated for IoT-based smart home (SH) applications. The prototype MIMO antenna is integrated with a commercially available ZigBee device, and the measured values are found to be consistent with the expected results. The proposed MIMO antenna could be a good candidate for IoT systems/modules due to its low profile, compact size, lightweight, and easy integration with wireless communication devices.


Author(s):  
Qiong Wang ◽  
Hui Zhang ◽  
Dirk Plettemeier ◽  
Eckhard Ohlmer ◽  
Gerhard Fettweis

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 226697-226704
Author(s):  
Pawan Kumar ◽  
Shabana Urooj ◽  
Areej Malibari

2021 ◽  
Author(s):  
Fardeen Mahbub ◽  
Rashedul Islam ◽  
M Tanseer Ali ◽  
Md. Abdur Rahman

Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3658
Author(s):  
María Elena de Cos Gómez ◽  
Humberto Fernández Álvarez ◽  
Alicia Flórez Berdasco ◽  
Fernando Las-Heras Andrés

An ultrathin, compact ecofriendly antenna suitable for IoT applications around 2.45 GHz is achieved as a result of exploring the use of Tencel fabric for the antenna’s design. The botanical ecofriendly Tencel is electromagnetically characterized, in terms of relative dielectric permittivity and loss tangent, in the target IoT frequency band. To explore the suitability of the Tencel, a comparison is conducted with conventionally used RO3003, with similar relative dielectric permittivity, regarding the antenna dimensions and performance. In addition, the antenna robustness under bent conditions is also analyzed by measurement. To assess the relevance of this contribution, the ultrathin ecofriendly Tencel-based antenna is compared with recently published antennas for IoT in the same band and also, with commercial half-wave dipole by performing a range test on a ZigBee-based IoT testbed.


2018 ◽  
Vol 7 (2.16) ◽  
pp. 19
Author(s):  
T Yugendra Chary ◽  
S Anitha ◽  
M Alamillo ◽  
Ameet Chavan

For efficient ultra-low power IoT applications, working with various communication devices and sensors which operating voltages  from subthreshold to superthreshold levels which requires wide variety of robust level converters for signal interfacing with low power dissipation. This paper proposes two topologies of level converter circuits that offer dramatic improvement in power and performance when compared to the existing level converters that shift signals from sub to super threshold levels for IoT applications. At 250 mV, the first proposed circuit - a modification of a tradition al current mirror level converter - offers the best energy efficiency with approximately seven times less energy consumption per operation than the existing design, but suffers from a slight reduction in performance.  However, a second proposed circuit - based on a two-stage level converter - at the same voltage enhances performance by several orders of magnitude while still maintaining a modest improvement in energy efficiency.  The Energy Delay Products (EDP) of the two proposed designs are equivalent and are approximately four times better than the best existing design.  Consequently, the two circuit options either optimizes power or performance with improved overall EDP.  


2018 ◽  
Vol 66 (7) ◽  
pp. 3327-3336 ◽  
Author(s):  
Kumud Ranjan Jha ◽  
Bisma Bukhari ◽  
Chitra Singh ◽  
Ghanshyam Mishra ◽  
Satish Kumar Sharma

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Satyanarayana Pamarthi ◽  
R. Narmadha

PurposeNowadays, more interest is found among the researchers in MANETs in practical and theoretical areas and their performance under various environments. WSNs have begun to combine with the IoT via the sensing capability of Internet-connected devices and the Internet access ability of sensor nodes. It is essential to shelter the network from attacks over the Internet by keeping the secure router.Design/methodology/approachThis paper plans to frame an effective literature review on diverse intrusion detection and prevention systems in Wireless Sensor Networks (WSNs) and Mobile Ad hoc NETworks (MANETs) highly suitable for security in Internet of Things (IoT) applications. The literature review is focused on various types of attacks concentrated in each contribution and the adoption of prevention and mitigation models are observed. In addition, the types of the dataset used, types of attacks concentrated, types of tools used for implementation, and performance measures analyzed in each contribution are analyzed. Finally, an attempt is made to conclude the review with several future research directions in designing and implementing IDS for MANETs that preserve the security aspects of IoT.FindingsIt observed the different attack types focused on every contribution and the adoption of prevention and mitigation models. Additionally, the used dataset types, the focused attack types, the tool types used for implementation, and the performance measures were investigated in every contribution.Originality/valueThis paper presents a literature review on diverse contributions of attack detection and prevention, and the stand of different machine learning and deep learning models along with the analysis of types of the dataset used, attacks concentrated, tools used for implementation and performance measures on the network security for IoT applications.


Sign in / Sign up

Export Citation Format

Share Document