Texturized mung bean protein as a sustainable food source: Effects of extrusion on its physical, textural and protein quality

2021 ◽  
Vol 67 ◽  
pp. 102591
Author(s):  
Fatema Hossain Brishti ◽  
Shyan Yea Chay ◽  
Kharidah Muhammad ◽  
Mohammad Rashedi Ismail-Fitry ◽  
Mohammad Zarei ◽  
...  
2020 ◽  
Vol 11 (10) ◽  
pp. 8918-8930
Author(s):  
Fatema Hossain Brishti ◽  
Shyan Yea Chay ◽  
Kharidah Muhammad ◽  
Mohammad Rashedi Ismail-Fitry ◽  
Mohammad Zarei ◽  
...  

Mung bean is an underutilized yet sustainable protein source. The current work elucidates the pilot-scale production of mung bean protein isolate and reveals good in vivo protein quality which secures TMBP's potential as a protein meal replacement and dietary supplement.


2018 ◽  
Vol 76 ◽  
pp. 131-140 ◽  
Author(s):  
Mengxia Du ◽  
Jianhua Xie ◽  
Bin Gong ◽  
Xin Xu ◽  
Wei Tang ◽  
...  

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 202
Author(s):  
Saqib Gulzar ◽  
Krisana Nilsuwan ◽  
Navaneethan Raju ◽  
Soottawat Benjakul

Shrimp oil (SO) rich in n-3 fatty acids and astaxanthin, mixed with antioxidant-rich tea seed oil (TSO), was microencapsulated using mung bean protein isolate and sodium alginate and fortified into whole wheat crackers. SO and TSO mixed in equal proportions were emulsified in a solution containing mung bean protein isolate (MBPI) and sodium alginate (SA) at varied ratios. The emulsions were spray-dried to entrap SO-TSO in MBPI-SA microcapsules. MBPI-SA microcapsules loaded with SO-TSO showed low to moderately high encapsulation efficiencies (EE) of 32.26–72.09% and had a fair flowability index. Two selected microcapsules with high EE possessed the particle sizes of 1.592 and 1.796 µm with moderate PDI of 0.372 and 0.403, respectively. Zeta potential values were −54.81 mV and −53.41 mV. Scanning electron microscopic (SEM) images indicated that microcapsules were spherical in shape with some shrinkage on the surface and aggregation took place to some extent. Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) analyses of samples empirically validated the presence of SO-TSO in the microcapsules. Encapsulated SO-TSO showed superior oxidative stability and retention of polyunsaturated fatty acids (PUFAs) to unencapsulated counterparts during storage of 6 weeks. When SO-TSO microcapsules were fortified in whole wheat crackers at varying levels (0–10%), the crackers showed sensorial acceptability with no perceivable fishy odor. Thus, microencapsulation of SO-TSO using MBPI-SA as wall materials could be used as an alternative carrier system, in which microcapsules loaded with PUFAs could be fortified in a wide range of foods.


2019 ◽  
Author(s):  
Chetan Sharma ◽  
Baljit Singh ◽  
Syed Zameer Hussain ◽  
Savita Sharma

PR 106 and SML 668 cultivars of rice and mung bean respectively, were studied for their potential to serve as a nutritious snack with improved protein quality and quantity. The effect of extrusion conditions, including feed moisture content (14–18%), screw speed (400–550 rpm) and barrel temperature (130–170°C) on the physicochemical properties (bulk density, water absorption index (WAI), water solubility index (WSI) and hardness) was investigated. The replacement of rice flour at 30% level with mung bean flour for making extruded snacks was evaluated. Pasting temperature increased (84–93 °C) while peak viscosity (2768–408 cP), hold viscosity (2018–369 cP), breakdown (750–39 cP), setback (2697–622 cP) and final viscosity (4715–991 cP) decreased with increasing mung bean flour addition. Increasing feed moisture lowered the specific mechanical energy (SME), WAI and WSI of extrudates whereas increased bulk density and hardness. Higher screw speed had linear positive effect on SME of extruder and negative linear effect on WAI. Positive curvilinear quadratic effect of screw speed was also observed on WSI and density. Higher barrel temperature linearly decreased the SME, density and hardness of extrudates. Developed extrusion cooked rice-mung bean snacks with increased protein content and improved protein quality along with higher dietary fiber and minerals have good potential in effectively delivering the nutrition to the population.


2022 ◽  
pp. 107485
Author(s):  
Ying Wang ◽  
Jing Zhao ◽  
Shucheng Zhang ◽  
Xiangzhong Zhao ◽  
Yuanfa Liu ◽  
...  

Foods ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1406
Author(s):  
Siriporn Chunkao ◽  
Wirote Youravong ◽  
Chutha T. Yupanqui ◽  
Adeola M. Alashi ◽  
Rotimi E. Aluko

An iron-binding mung bean protein hydrolysate (MBPH) was prepared using a continuous enzymatic membrane reactor followed by peptide separation on anion-exchange (AEC) and reverse-phase HPLC (RP-HPLC) columns. Amino acid sequences of peptides present in the RP-HPLC fraction with the strongest iron-binding capacity were identified using mass spectrometry, and ten peptides of 5–8 amino acids synthesized for antioxidant characterization. Five fractions (AF1– AF5) with higher iron-binding capacity (88.86 ± 6.43 to 153.59 ± 2.18 mg/g peptide) when compared to the MBPH (36.81 ± 0.93 mg/g peptide) were obtained from AEC. PAIDL had the significantly (p < 0.05) highest iron-binding capacity, but LLLLG and LLGIL showed the strongest metal chelating activity. However, PAIDL (46.63%) and LLGIL (81.27%) had significantly (p < 0.05) better DPPH radical scavenging activity than the other peptides. PAIDL and LLGIL were also the most effective (p < 0.05) hydroxyl radical neutralizers with an effective concentration that scavenged 50% (EC50) values of 0.09 and 0.37 mM, respectively. PAIDL and AIVIL showed the lowest EC50 values of 0.07 mM each for superoxide radical scavenging activity. We conclude that short chain length in combination with leucine as the C-terminal amino acid residue contributed to the strong antioxidant properties of peptides in this study.


LWT ◽  
2021 ◽  
Vol 152 ◽  
pp. 112390
Author(s):  
Mei Yang ◽  
Nana Li ◽  
Litao Tong ◽  
Bei Fan ◽  
Lili Wang ◽  
...  

2016 ◽  
Vol 182 (2) ◽  
pp. 586-597 ◽  
Author(s):  
Ganesan Kandasamy ◽  
Sitti Raehanah Muhamad Shaleh

Sign in / Sign up

Export Citation Format

Share Document