The effect of cataphoretic and powder coatings on the strength and failure modes of EN AW-5754 aluminium alloy adhesive joints

2019 ◽  
Vol 89 ◽  
pp. 40-50 ◽  
Author(s):  
Anna Rudawska ◽  
Magd Abdel Wahab
Volume 3 ◽  
2004 ◽  
Author(s):  
L. Han ◽  
K. Young ◽  
R. Hewitt ◽  
A. Chrysanthou ◽  
J. M. O’Sullivan

Self-piercing riveting, as an alternative joining method to spot-welding, has attracted considerable interest from the automotive industry and has been widely used in aluminium intensive vehicles. One of the important factors that need to be considered is the effect of cyclic loading in service, leading to possible fatigue failure. The previous work reported in the public domain on the behaviour of self-piercing rivets has mainly focused on static tests. The work which is reported in this paper is concerned with the fatigue behaviour of single-rivet joints, joining two 2mm 5754 aluminium alloy sheets. The investigation also examined the effect of interfacial conditions on the fatigue behaviour. A number of fatigue failure mechanisms were observed based on rivet fracture, sheet fracture and combinations of these. The investigation has shown that they were dependent on the applied load and the sheet surface condition. Three-parameter Weibull analysis, using Reliasoft Weibull ++5.0 software, was conducted to analyse the experimental results. The analysis enabled the prediction of early-type failure (infant mortality failure) and wear-out failure patterns depending on the condition of the self-piercing riveted joints and the alloy sheet surface.


Author(s):  
Raffaele Ciardiello ◽  
Andrea Tridello ◽  
Luca Goglio ◽  
Giovanni Belingardi

In the last decades, the use of adhesives has rapidly increased in many industrial fields. Adhesive joints are often preferred to traditional fasteners due to the many advantages that they offer. For instance, adhesive joints show a better stress distribution compared to the traditional fasteners and high mechanical properties under different loading conditions. Furthermore, they are usually preferred for joining components made of different materials. A wide variety of adhesives is currently available: thermoset adhesives are generally employed for structural joints but recently there has been a significant increment in the use of thermoplastic adhesives, in particular of the hot-melt adhesives (HMAs). HMAs permit to bond a large number of materials, including metal and plastics (e.g., polypropylene, PP), which can be hardly bonded with traditional adhesives. Furthermore, HMAs are characterized by a short open time and, therefore, permit for a quick and easy assembly process since they can be easily spread on the adherend surfaces by means of a hot-melt gun and they offer the opportunity of an ease disassembling process for repair and recycle. For all these reasons, HMAs are employed in many industrial applications and are currently used also for bonding polypropylene and polyolefin piping systems. In the present paper, the dynamic response of single lap joints (SLJ) obtained by bonding together with a polyolefin HMA two polypropylene substrates was experimentally assessed. Quasi-static tests and dynamic tests were carried out to investigate the strain rate effect: dynamic tests were carried out with a modified instrumented impact pendulum. Relevant changes in the joint performance have been put in evidence. Failure modes were finally analysed and compared. A change in the failure mode is experimentally found: in quasi-static tests SLJ failed due to a cohesive failure of the adhesive, whereas in dynamic tests the SLJ failed due to an interfacial failure, with a low energy absorption.


2018 ◽  
Vol 2018 (0) ◽  
pp. OS0220
Author(s):  
Muhamad Azrul Hadi GHAZALI ◽  
Kyota NAKAGAWA ◽  
Shohei ITO ◽  
Naoki MORI ◽  
Takayuki KUSAKA ◽  
...  

2007 ◽  
Vol 124-126 ◽  
pp. 1313-1316
Author(s):  
Je Hoon Oh

Combined thermal and mechanical analyses were used to investigate the effect of joint design parameters such as the adhesive thickness and bonding length on stress distributions and torque capacities of tubular adhesive joints with composite adherends. The finite element analysis was employed to calculate the residual thermal stresses due to fabrication, and the mechanical stresses were analyzed using the nonlinear analysis of tubular adhesive joints. The analyses reveal that the stacking angle, adhesive thickness and bonding length have a significant influence on residual thermal stresses, and consequently failure modes and joint strengths.


Author(s):  
CL Ferreira ◽  
RDSG Campilho ◽  
RDF Moreira

The use of adhesive bonds has attracted considerable interest from the scientific community. Stepped-lap joints have the advantage of decreasing stress gradients along the bond length, although the outer steps still encounter stress levels above the steps in the inner zone of the joint. One possible way to reduce this stress gradient is to combine this type of joint with the use of two adhesives. This work consists of an experimental and numerical evaluation of stepped-lap dual-adhesive joints between aluminum adherends, for various overlap lengths ( LO), and comparison with stepped-lap single-adhesive joints. The adhesives Araldite® AV138, Araldite® 2015, and Sikaforce® 7752 were evaluated. Numerically, cohesive zone models with a triangular damage law were applied in the joint behavior prediction. The analysis of the results is presented in the form of failure modes, stress analysis, damage variable analysis, load–displacement ( P–δ) curves and maximum load ( Pm), and energy required to failure ( U). It was concluded that, in general, cohesive zone model presented precise predictions. In general, no significant increase in strength was achieved with dual-adhesive joint but, on the other hand, significant energy increases were obtained.


2015 ◽  
Vol 761 ◽  
pp. 318-323 ◽  
Author(s):  
Mohd Shahir Kasim ◽  
Mohamad Hazizan Atan ◽  
C.H. Che Haron ◽  
Jaharah A. Ghani ◽  
Mohd Amri Sulaiman ◽  
...  

This article presents the tool wear mechanism when machining Aluminium alloy 6061-T6 with PVD coated carbide under dry cutting condition. Cutting parameters selected were cutting speed, Vc = 115-145 m/min; feed rate fz = 0.15-0.2 mm/tooth and depth of cut, ap = 0.5-0.75 mm. The result showed the tool life of PVD TiAlN ranged from 11 to 97 min. Full factorial approach was employed to exhibit relationship between parameter input and output. From the analysis, cutting speed was found to be the most significant factor for tool performance followed by feed rate and depth of cut. It was also found that most of failure modes occurred were notch wear and flaking near those found near depth of cut line.


2013 ◽  
Vol 690-693 ◽  
pp. 2608-2611
Author(s):  
Yin Huan Yang

Tension tests on T700/EXOPY unidirectional laminates and 3-D and six-directional braided composites single-lap adhesive joints with different adhesive types under uniaxial tensile loading are performed in the presented paper. Failure modes, strengths and load-displacement curves of two kinds of different adhesive joints are compared and analyzed. According to the experimental results, it is found that the strength of the joints of the smaller adhesive shear strength is less, in contrast, the strength of the joints of the bigger adhesive shear strength is greater, Failure shear strength average is grown 27% relatively. And the starting position of the crack is appeared at the overlap ends, and the whole joint is failed with propagation of the crack.


Sign in / Sign up

Export Citation Format

Share Document