High prevalence of carbapenem resistance among plasmid-mediated AmpC β-lactamase-producing Klebsiella pneumoniae during outbreaks in liver transplantation units

2015 ◽  
Vol 45 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Yasufumi Matsumura ◽  
Michio Tanaka ◽  
Masaki Yamamoto ◽  
Miki Nagao ◽  
Kiyomasa Machida ◽  
...  
2014 ◽  
Vol 60 (10) ◽  
pp. 691-695 ◽  
Author(s):  
Bin Li ◽  
Xiao-hong Xu ◽  
Zhi-chang Zhao ◽  
Mei-hua Wang ◽  
Ying-ping Cao

The aim of this study was to characterize the carbapenemases in carbapenem-resistant Klebsiella pneumoniae (CR-KP) from a Chinese teaching hospital. A total of 40 CR-KPs were screened for the presence of carbapenemases. Minimum inhibitory concentrations were determined by agar dilution. The modified Hodge test was used for the detection of carbapenemase production. Carbapenemase, extended-spectrum β-lactamase, and AmpC genes were detected using polymerase chain reaction (PCR) and sequencing. A conjugation test was performed using a broth culture mating method, transferred plasmids were typed by PCR-based replicon typing, and clonal relatedness was investigated by enterobacterial repetitive intergenic consensus sequences PCR (ERIC–PCR) and multilocus sequence typing (MLST). The results revealed that modified Hodge test was positive for 28 CR-KPs, and CR-KPs exhibited high resistance rates against various antibiotics, except colistin (5.0%) and tigecycline (22.5%). ERIC and MLST profiles showed no clonal outbreak. PCR demonstrated a high prevalence rate (55.0%, 22/40) of metallo-β-lactamases (MBLs) in CR-KPs. IMP-4, IMP-8, NDM-1, and KPC-2 were identified in 14 (35.0%), 7 (17.5%), 2 (5.0%), and 7 (17.5%) isolates, respectively. Notably, 2 CR-KPs coproduced 2 carbapenemases simultaneously (IMP-8/NDM-1 and IMP-4/KPC-2). In vitro transfer of carbapenem resistance was successful for 11 MBL-producing CR-KPs. The extended spectrum β-lactamase genes were detected in 30 (75.0%) of these CR-KPs. To the best of our knowledge, this is the first report focusing on carbapenem resistance in K. pneumoniae due to metalloenzymes in China. Screening and surveillance of MBLs in Enterobacteriaceae is urgently needed in this region to control and prevent the spread of these resistance determinants.


2021 ◽  
Vol 9 (2) ◽  
pp. 271
Author(s):  
Yuarn-Jang Lee ◽  
Chih-Hung Huang ◽  
Noor Andryan Ilsan ◽  
I-Hui Lee ◽  
Tzu-Wen Huang

Urinary tract infections (UTIs) are common in clinics and hospitals and are associated with a high economic burden. Enterobacterium Klebsiella pneumoniae is a prevalent agent causing UTIs. A high prevalence of carbapenem-resistant K. pneumoniae (CRKP) has emerged recently and is continuing to increase. Seventeen urinary CRKP isolates collected at a teaching hospital in Taiwan from December 2016 to September 2017 were analyzed to elucidate their drug resistance mechanisms. Two-thirds of the isolates were obtained from outpatients. Antimicrobial susceptibility tests demonstrated multidrug resistance in all the isolates. Multilocus sequence typing analysis showed high diversity among the isolates. PCR analysis demonstrated the presence of carbapenemases in three isolates. All isolates carried at least one other extended-spectrum β-lactamase, including TEM, DHA, and CTX-M. Fifteen isolates contained mutations in one of the outer membrane porins that were assessed. The expression levels of the acrB and/or oqxB efflux pump genes, as determined by qRT-PCR, were upregulated in 11 isolates. Six isolates might have utilized other efflux pumps or antimicrobial resistance mechanisms. These analyses demonstrated a highly diverse population and the presence of complex resistance mechanisms in urinary isolates of K. pneumoniae.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Wei Wang ◽  
Xiaoya Wang

AbstractBackgroundPseudomonas aeruginosa is an opportunistic pathogen which is associated with nosocomial infections and causes various diseases including urinary tract infection, pneumonia, soft-tissue infection and sepsis. The emergence of P. aeruginosa-acquired metallo-β-lactamase (MBL) is most worrisome and poses a serious threat during treatment and infection control. The objective of this study was to identify antibiotic susceptibility, phenotypic detection of MBL production and to determine the prevalence of MBL genes in carbapenem-resistant P. aeruginosa isolated from different clinical samples.MethodsA total of 329 non-duplicate P. aeruginosa isolated from various clinical samples from two hospitals in China between September 2017 and March 2019 were included in this study. Phenotypic detection of MBL was performed by the combined detection method using imipenem and imipenem-ethylenediaminetetraacetic acid (EDTA) discs. MBL-encoding genes including blaVIM-1, blaVIM-2, blaIMP-1, blaIMP-2, blaSPM-1, blaSIM, blaNDM-1 and blaGIM were detected by polymerase chain reaction (PCR).ResultsOf the 329 P. aeruginosa, majority of the isolates were resistant to imipenem (77.5%) followed by meropenem (64.7%). Of the 270 P. aeruginosa isolates tested, 149 (55.2%) isolates were found to be positive for MBL detection. Of the different samples, 57.8% (n = 26) of P. aeruginosa isolated from blood were found to be positive for MBL production. Of the various MBL genes, blaIMP-1 (28.2%) was the most predominant gene detected followed by blaVIM-2 (18.8%), blaVIM-1 (16.1%), blaNDM-1 (9.4%), blaIMP-2 (6.7%), blaSIM (6.0%), blaSPM-1 (4.0%) and blaGIM (1.3%) genes.ConclusionsThe high resistance of P. aeruginosa toward imipenem and meropenem and the high prevalence of blaIMP-1 and blaVIM-2 set the alarm on the increasing, perhaps the increased, carbapenem resistance. In addition to routine antibiotic susceptibility testings, our results emphasize the importance of both the phenotypic and genotypic MBL detection methods in routine practice for early detection of carbapenem resistance and to prevent further dissemination of this resistant pathogen.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S7-S7
Author(s):  
Alexander Lawandi ◽  
Gleice C Leite ◽  
Brigitte Lefebvre ◽  
Jean Longtin ◽  
Todd C Lee

Abstract Background Invasive infections with Carbapenemase Producing Enterobacterales are associated with considerable morbidity and mortality, in part due to the risk of inappropriate empiric therapy. Consequently, the rapid identification of carbapenem resistance is crucial to the management of these infections. We sought to evaluate possible reductions in turnaround time to identification of this resistance in blood cultures growing these organisms by applying rapid phenotypic test kits to growth from “hot chocolate” plates. Methods 30 blood cultures, spiked with carbapenem resistant Klebsiella pneumoniae isolates or susceptible controls, were inoculated onto chocolate agars that had pre-warmed at 37°C. These plates were incubated at 37ºC for 3.5 hours. The resulting minimal growth was then identified using MALDI-TOF and underwent rapid phenotypic testing using three commercially available products (β-lacta and β-carba, from Bio-Rad, Marnes-la-Coquette, France, and Carba-NP, from bioMérieux, Durham, NC). The time to identification of carbapenem resistance using this method was then compared to that of the conventional laboratory workup. Results The identification was 100% accurate to the species level using MALDI-TOF paired to the 3.5 hour growth on the “hot choocolate” plates. The β-lacta kit identified resistance to 3rd generation cephalosporins for all ESBL and carbapenemase producing Klebsiella pneumoniae isolates, while the β-carba and Carba-NP kits identified carbapenem resistance only in the carbapenemase producers. The sensitivity of all assays was 100% (95% CI 0.87–1.0) and the specificity of carbapenemase detection was 100% (97.5% one-sided CI 0.4–1.0). The corresponding sensitivities and specificities of direct disc diffusion for ertapenem resistance detection were 88.5% (95% CI 0.70–0.98) and 100% (95%CI 0.40–1.0) respectively. The turnaround time for the rapid kits coupled to the “hot chocolate” plates was 4.25 to 5.1 hours as compared to 16 hours for the conventional workup. Conclusion Rapid phenotypic tests performed after inoculation of “hot chocolate” plates are highly sensitive for the presence of carbapenemase production and can be incorporated into the laboratory workflow for Klebisella pneumoniae with important reductions in turnaround time. Disclosures All Authors: No reported disclosures


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S412-S413
Author(s):  
Michael R Jacobs ◽  
Caryn E Good ◽  
Ayman M Abdelhamed ◽  
Daniel D Rhoads ◽  
Kristine M Hujer ◽  
...  

Abstract Background Plazomicin is a next-generation aminoglycoside with in vitro activity against multidrug-resistant Gram-negative species, including carbapenem-resistant isolates. The Consortium on Resistance Against Carbapenems in Klebsiella and other Enterobacteriaceae (CRACKLE) is a federally funded, prospective multicenter consortium of 20 hospitals from nine US healthcare systems to track carbapenem-resistant Enterobacteriaceae. Methods Minimum inhibitory concentrations (MICs) of plazomicin were determined by broth microdilution according to current CLSI guidelines against a collection of 697 carbapenem-resistant Klebsiella pneumoniae with defined carbapenem resistance mechanisms, including KPC and OXA carbapenemases. Isolates were submitted by participating CRACKLE centers. Results Carbapenemases present in study isolates included KPC-2 (n = 323), KPC-3 (n = 364), KPC-4 (n = 2), OXA-48 like (n = 7), and NDM (n = 1). Plazomicin MICs ranged from ≤0.12 to >32 mg/L, with MIC50 and MIC90 values of 0.25 and 1 mg/L, respectively (figure). MICs of 689 (98.8%) isolates were ≤4 mg/L, while MICs of the remaining eight isolates were >32 mg/L. Plazomicin MICs were related to specific carbapenemases present in isolates: of eight isolates with MICs >32 mg/L, seven contained OXA-48 like and one contained KPC-3, suggesting that these isolates possess an aminoglycoside-resistance mechanism on the same plasmid as their carbapenemase gene, such as a 16S ribosomal RNA methyltransferase, against which plazomicin is not active. Conclusion Plazomicin has good in vitro potency against a collection of carbapenemase-producing K. pneumoniae, with MIC90 value of 1 mg/L and MICs of ≤4 mg/L for 98.9% of isolates. Disclosures M. R. Jacobs, Achaogen: Investigator, Research grant. Shionogi: Investigator, Research grant. L. Connolly, Achaogen, Inc.: Consultant, Consulting fee. K. M. Krause, Achaogen: Employee, Salary. S. S. Richter, bioMerieux: Grant Investigator, Research grant. BD Diagnostics: Grant Investigator, Research grant. Roche: Grant Investigator, Research grant. Hologic: Grant Investigator, Research grant. Diasorin: Grant Investigator, Research grant. Accelerate: Grant Investigator, Research grant. Biofire: Grant Investigator, Research grant. D. Van Duin, achaogen: Scientific Advisor, Consulting fee. shionogi: Scientific Advisor, Consulting fee. Allergan: Scientific Advisor, Consulting fee. Astellas: Scientific Advisor, Consulting fee. Neumedicine: Scientific Advisor, Consulting fee. Roche: Scientific Advisor, Consulting fee. T2 Biosystems: Scientific Advisor, Consulting fee.


Vaccines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 92
Author(s):  
Palittiya Sintusek ◽  
Supranee Buranapraditkun ◽  
Piyaporn Wanawongsawad ◽  
Nawarat Posuwan ◽  
Pattarawat Thantiworasit ◽  
...  

A high prevalence of hepatitis B (HepB) antibody loss after liver transplantation (LT) and de novo HepB infection (DNH) was documented, hence revaccination to prevent DNH is crucial. This study aimed to compare the safety and immunogenicity of two HepB vaccine regimens in liver-transplanted children. Liver-transplanted children who were previously immunised but showed HepB surface antibodies (anti-HBs) ≤ 100 mIU/mL were randomised to receive a standard three-dose (SD) and double three-dose (DD) vaccine intramuscularly in months 0–1–6. Anti-HBs and T-cell-specific response to the HepB antigen were assessed. A total of 61 children (54.1% male, aged 1.32 ± 1.02 years) completed the study without any serious adverse reaction. The seroprotective rate was 69.6% vs. 60% (p = 0.368) and 91.3% vs. 85% (p = 0.431) in SD and DD after the first and third 3-dose vaccinations, respectively. The geometric mean titre (95% confidence interval) of anti-HBs in SD and DD were 443.33 (200.75–979.07) vs. 446.17 (155.58–1279.50) mIU/mL, respectively, at completion. Numbers of interferon-γ-secreting cells were higher in hyporesponders/responders than in nonresponders (p = 0.003). The significant factors for the immunologic response to HepB vaccination were anti-HB levels prevaccination, tacrolimus trough levels, and time from LT to revaccination. SD and DD had comparative immunogenicity and were safe for liver-transplanted children who were previously immunised.


Author(s):  
Reyhan Kiş ◽  
Ebru Demiray Gündüz ◽  
Ayşe Nur Sarı ◽  
Zeynep Gülay

Objective: Carbapenem resistance has been reported with increasing frequency among members of Enterobacterales, especially in the last 10 years. Screening and detection of carbapenemase-producing isolates is important in terms of both directing the treatment and preventing its spread. In our study, it was aimed to determine the carbapenemase types and molecular epidemiological relationships of carbapenem resistant Klebsiella pneumoniae isolates, which were isolated sequentially from the samples sent to microbiology laboratory of our hospital. Method: A total of 32 carbapenem-resistant K. pneumoniae isolates of the samples sent to microbiology laboratory between July and September 2014, were included in the study. In addition to classical methods, identification of isolates at species level was made with BD Phoenix ID/AST automated system. Carbapenemase types (blaOXA-48, blaNDM, blaIMP, blaKPC, blaVIM and blaGES) of the isolates were investigated by PCR. The clonal relationship between the isolates was assessed with PFGE. Results: It was noted that 18 isolates were obtained from intensive care units, 9 from inpatient and 5 from outpatient departments. The blaOXA48 gene was found in all isolates while the other carbapenemase genes were not found. It was determined that strains were isolated from 32 patients in our hospital had 12 different PFGE pulsotypes, named as A-L. Among these, the most common ones were B (n=18) and closely related B1 pattern (n=2). The remaining isolates were represented by 11 different types. It was observed that the first isolate with B pulsotype was responsible for the spread of the outbreak from General Intensive Care Unit. Conclusion: It has been thought that the spread of carbapenem- resistant K. pneumoniae isolates in the hospital was probably occurred through the transfer of isolates from patients with gastrointestinal colonization to other patients through hospital staff. Therefore, the spread of the isolates in hospitals can be limited by detecting colonization with active surveillance programs and by applying contact isolation and effective infection control measures.


Sign in / Sign up

Export Citation Format

Share Document