Soy protein isolate supplemented silk fibroin nanofibers for skin tissue regeneration: Fabrication and characterization

2020 ◽  
Vol 160 ◽  
pp. 112-127 ◽  
Author(s):  
Neelima Varshney ◽  
Ajay Kumar Sahi ◽  
Suruchi Poddar ◽  
Sanjeev Kumar Mahto
2020 ◽  
Vol 247 ◽  
pp. 116712 ◽  
Author(s):  
Han Yang ◽  
Zhiwei Su ◽  
Xianghong Meng ◽  
Xinyan Zhang ◽  
John F. Kennedy ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 69 ◽  
Author(s):  
Fan Liu ◽  
Chen Liu ◽  
Bowen Zheng ◽  
Jia He ◽  
Jun Liu ◽  
...  

In bone tissue engineering, an ideal scaffold is required to have favorable physical, chemical (or physicochemical), and biological (or biochemical) properties to promote osteogenesis. Although silk fibroin (SF) and/or soy protein isolate (SPI) scaffolds have been widely used as an alternative to autologous and heterologous bone grafts, the poor mechanical property and insufficient osteoinductive capability has become an obstacle for their in vivo applications. Herein, β-tricalcium phosphate (β-TCP) and graphene oxide (GO) nanoparticles are incorporated into SF/SPI scaffolds simultaneously or individually. Physical and chemical properties of these composite scaffolds are evaluated using field emission scanning electron microscope (FESEM), X-ray diffraction (XRD) and attenuated total reflectance Fourier transformed infrared spectroscopy (ATR-FTIR). Biocompatibility and osteogenesis of the composite scaffolds are evaluated using bone marrow mesenchymal stem cells (BMSCs). All the composite scaffolds have a complex porous structure with proper pore sizes and porosities. Physicochemical properties of the scaffolds can be significantly increased through the incorporation of β-TCP and GO nanoparticles. Alkaline phosphatase activity (ALP) and osteogenesis-related gene expression of the BMSCs are significantly enhanced in the presence of β-TCP and GO nanoparticles. Especially, β-TCP and GO nanoparticles have a synergistic effect on promoting osteogenesis. These results suggest that the β-TCP and GO enhanced SF/SPI scaffolds are promising candidates for bone tissue regeneration.


2019 ◽  
Vol 7 (10) ◽  
pp. 9257-9271 ◽  
Author(s):  
Pramod Dorishetty ◽  
Rajkamal Balu ◽  
Anjitha Sreekumar ◽  
Liliana de Campo ◽  
Jitendra P. Mata ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1807
Author(s):  
Estefanía Álvarez-Castillo ◽  
José Manuel Aguilar ◽  
Carlos Bengoechea ◽  
María Luisa López-Castejón ◽  
Antonio Guerrero

Composite materials based on proteins and carbohydrates normally offer improved water solubility, biodegradability, and biocompatibility, which make them attractive for a wide range of applications. Soy protein isolate (SPI) has shown superabsorbent properties that are useful in fields such as agriculture. Alginate salts (ALG) are linear anionic polysaccharides obtained at a low cost from brown algae, displaying a good enough biocompatibility to be considered for medical applications. As alginates are quite hydrophilic, the exchange of ions from guluronic acid present in its molecular structure with divalent cations, particularly Ca2+, may induce its gelation, which would inhibit its solubilization in water. Both biopolymers SPI and ALG were used to produce composites through injection moulding using glycerol (Gly) as a plasticizer. Different biopolymer/plasticizer ratios were employed, and the SPI/ALG ratio within the biopolymer fraction was also varied. Furthermore, composites were immersed in different CaCl2 solutions to inhibit the amount of soluble matter loss and to enhance the mechanical properties of the resulting porous matrices. The main goal of the present work was the development and characterization of green porous matrices with inhibited solubility thanks to the gelation of alginate.


Author(s):  
Ozan Tas ◽  
Ulku Ertugrul ◽  
Mecit Halil Oztop ◽  
Bekir Gokcen Mazı

Sign in / Sign up

Export Citation Format

Share Document