Impact of calcium ions and degree of oxidation on the structural, physicochemical, and in-vitro release properties of resveratrol-loaded oxidized gellan gum hydrogel beads

Author(s):  
Peng Wang ◽  
Zhi-gang Luo ◽  
Zhi-gang Xiao ◽  
Ahmed S.M. Saleh
Author(s):  
ANKITA KAPOOR ◽  
G. D. GUPTA

Objective: The present research work aims at describing the formulation, optimization and evaluation of ion activated ocular in-situ gel of gatifloxacin for treatment of bacterial conjunctivitis so as to overcome patient inconvenience, precorneal drug elimination, variation in efficacy, vision blurring and frequent instillation associated with conventional eye drops and ointments. Methods: In-situ gel was prepared using gellan gum as an ion activated phase transition polymer and HPMC K100M as release retardant. Gatifloxacin was characterized by spectrophotometry. Crystalline state of the drug was determined using X Ray Diffraction study. The developed formulation exhibited instantaneous gel formation in simulated lacrimal fluid (pH 7.4), which was further evaluated for its rheology, irritancy parameters, in vitro release, trans-corneal permeation and antimicrobial activity. Results: Gatifloxacin exhibited λmax 286 nm obeying Beer Lambert’s law and pH-dependent solubility at a pH range of 2 to 4. 0.6% gellan gum and 0.4% HPMC K100M were optimized in the formulation which exhibited a viscosity of 55 cps in sol form and 325 cps in gel form with pseudoplastic behavior and prolonged in vitro release. Permeation of formulation was 75.8% in 7 h with log P of drug 0.59. Developed isotonic and non-irritant formulation had a lower apparent permeability coefficient of 8.15 x 10-5 cm/sec as compared to marketed formulation. Conclusion: A Formulation can be viewed as an efficacious medicine by virtue of its higher zone of inhibition, ability to enhance precorneal residence time and consequently ocular bioavailability with lesser frequency of administration attributed to slow and prolonged diffusion of the drug from the polymeric solutions.


Author(s):  
SUDIPTA DAS ◽  
RIMI DEY

Objectives: A novel formulation was developed with glimepiride loaded trivalent ion Al+3 cross-linked and acetalated gellan gum microspheres. Methods: The glimepiride loaded microspheres were formulated using sodium alginate and gellan gum. Cross-linking agents used for the microspheres were aluminum chloride (AlCl3) and glutaraldehyde (GA). The evaluation processes of prepared microspheres were carried out by in-vitro release study, swelling index, microscopic analysis, and entrapment efficiency. Results: All the formulations show good entrapment efficiency and the maximum entrapment 84.6% was governed by the formulation (F3) cross-linked by AlCl3 and GA and their obtained mean particle size were 12.46±3.21 μm. Release profile of the formulations revealed the sustained design of the drug, particularly this formulation (F3), releasing approximately 40% over 4 h. Conclusions: From this experiment, it can be accustomed that F3 possesses higher standard formulation than the rest due to good release profile and entrapment efficiency. Therefore, the long term stability study is required for future development of this formulation.


2008 ◽  
Vol 74 (3) ◽  
pp. 451-457 ◽  
Author(s):  
Argyrios Nochos ◽  
Dionysios Douroumis ◽  
Nikolaos Bouropoulos

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 182
Author(s):  
Minaxi Sharma ◽  
Baskaran Stephen Inbaraj ◽  
Praveen Kumar Dikkala ◽  
Kandi Sridhar ◽  
Arjun Naik Mude ◽  
...  

Curcumin has been demonstrated to have biological activities and its fortification in food products is an important strategy to deliver bioactive ingredients at target sites. However, studies have documented a curcumin low bioavailability and low intake. Hence, combining functional ingredients with food should be needed to prevent widespread nutrient intake shortfalls and associated deficiencies. Thus, curcumin was encapsulated in calcium-alginate and their characteristics as well as in vitro release behavior of curcumin hydrogel beads (CHBs) was studied. Moreover, CHBs were fortified in development of functional Kulfi and their quality characteristics were studied. The encapsulation efficiency was up to 95.04%, indicating that most of the curcumin was entrapped. FTIR shifts in the bands were due to the replacement of sodium ions to the calcium ions. In vitro release (%) for CHBs was found to be 67.15% after 2 h, which increased slightly up to 67.88% after 4 h. The average swelling index of CHBs was found to be 10.21 to 37.92 from 2 to 12 h in PBS (pH 7.40). Control and Kulfi fortified with CHBs showed no significant difference (p > 0.05) in colour (L = 73.03 and 75.88) and the melting rate (0.88 mL/min and 0.63 mL/min), respectively. Standard plate count was reduced in the Kulfi fortified with CHBs (13.77 × 104 CFU/mL) with high sensory score for overall acceptability (8.56) compared to the control (154.70 × 104 CFU/mL). These findings suggested the feasibility of developing CHBs to mask the bitterness, enhance the solubility, and increase the bioavailability in gastrointestinal conditions. Additionally, Kulfi could be a suitable dairy delivery system for curcumin bioactive compounds.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 572 ◽  
Author(s):  
Ahmed Youssef ◽  
Narendar Dudhipala ◽  
Soumyajit Majumdar

Bacterial endophthalmitis (BE) is a potentially sight-threatening inflammatory reaction of the intraocular fluids or tissues caused by bacteria. Ciprofloxacin (CIP) eye drops are prescribed as first-line therapy in BE. However, frequent administration is necessary due to precorneal loss and poor ocular bioavailability. The objective of the current research was to prepare CIP containing nanostructured lipid carriers (CIP-NLCs) loaded an in situ gel system (CIP-NLC-IG) for topical ocular administration for enhanced and sustained antibacterial activity in BE treatment. CIP-NLCs were prepared by the hot homogenization method and optimized based on physicochemical characteristics and physical stability. The optimized CIP-NLC formulation was converted into CIP-NLC-IG with the addition of gellan gum as a gelling agent. Furthermore, optimized CIP-NLC and CIP-NLC-IG were evaluated for in vitro release and ex vivo transcorneal permeation studies, using commercial CIP ophthalmic solution (CIP-C) as the control. The optimized CIP-NLC formulation showed particle size, polydispersity index, zeta potential, assay and entrapment efficiency of 193.1 ± 5.1 nm, 0.43 ± 0.01, −32.5 ± 1.5 mV, 99.5 ± 5.5 and 96.3 ± 2.5%, respectively. CIP-NLC-IG with 0.2% w/v gellan gum showed optimal viscoelastic characteristics. The in vitro release studies demonstrated sustained release of CIP from CIP-NLC and CIP-NLC-IG formulations over a 24 h period. Transcorneal flux and permeability increased 4 and 3.5-fold, and 2.2 and 1.9-fold from CIP-NLC and CIP-NLC-IG formulations, respectively, when compared to CIP-C. The results demonstrate that CIP-NLC-IG could be considered as an alternate delivery system to prolong the residence time on the ocular surface after topical administration. Thus, the current CIP ophthalmic formulations may exhibit improved ocular bioavailability and prolonged antibacterial activity, which may improve therapeutic outcomes in the treatment of BE.


Sign in / Sign up

Export Citation Format

Share Document