SIF statistics in micro cracked solid: Effect of crack density, orientation and clustering

2009 ◽  
Vol 47 (2) ◽  
pp. 192-208 ◽  
Author(s):  
V.I. Kushch ◽  
S.V. Shmegera ◽  
I. Sevostianov
Keyword(s):  
1981 ◽  
Vol 6 ◽  
Author(s):  
J.R. Mclaren ◽  
R.W. Davidge ◽  
I. Titchell ◽  
K. Sincock ◽  
A. Bromley

ABSTRACTHeating to temperatures up to 500°C, gives a reduction in Young's modulus and increase in permeability of granitic rocks and it is likely that a major reason is grain boundary cracking. The cracking of grain boundary facets in polycrystalline multiphase materials showing anisotropic thermal expansion behaviour is controlled by several microstructural factors in addition to the intrinsic thermal and elastic properties. Of specific interest are the relative orientations of the two grains meeting at the facet, and the size of the facet; these factors thus introduce two statistical aspects to the problem and these are introduced to give quantitative data on crack density versus temperature. The theory is compared with experimental measurements of Young's modulus and permeability for various rocks as a function of temperature. There is good qualitative agreement, and the additional (mainly microstructural) data required for a quantitative comparison are defined.


2016 ◽  
Vol 53 (3) ◽  
pp. 125-143
Author(s):  
S. González ◽  
M. González ◽  
J. Dominguez ◽  
F. Lasagni

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Salah Amrani ◽  
Duygu Kocaefe ◽  
Yasar Kocaefe ◽  
Dipankar Bhattacharyay ◽  
Mohamed Bouazara ◽  
...  

AbstractCarbon anodes are used in the electrolytic production of aluminum. The quality of anodes is directly related to the production cost, carbon and energy consumption, and environmental emissions. It is desired that the anodes have high density, low porosity/cracks, low electrical resistivity as well as low air and CO2 reactivities. Low resistivity of anodes reduces energy required to produce aluminum during electrolysis. The presence of cracks and pores increases the anode electrical resistivity. Therefore, it is important to know how and when the pores and cracks form during the anode production so that the necessary actions could be taken to prevent their formation. A study was carried out to investigate the effect of different anode production parameters such as anode composition, type of raw material used, time and top-former bellow pressure of vibro-compactor, green anode cooling medium, and heating rate used during baking on the crack formation. The anodes are fabricated at the carbon laboratory of University of Quebec at Chicoutimi (UQAC) and characterized by measuring their properties (density, electrical resistivity, and surface crack density). The anode properties, hence the anode quality, were correlated with the anode production parameters. Also, their tomographic analysis was carried out to visualize and quantify the internal cracks. Graphical abstract


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1913
Author(s):  
Yousef Navidtehrani ◽  
Covadonga Betegón ◽  
Emilio Martínez-Pañeda

We present a simple and robust implementation of the phase field fracture method in Abaqus. Unlike previous works, only a user material (UMAT) subroutine is used. This is achieved by exploiting the analogy between the phase field balance equation and heat transfer, which avoids the need for a user element mesh and enables taking advantage of Abaqus’ in-built features. A unified theoretical framework and its implementation are presented, suitable for any arbitrary choice of crack density function and fracture driving force. Specifically, the framework is exemplified with the so-called AT1, AT2 and phase field-cohesive zone models (PF-CZM). Both staggered and monolithic solution schemes are handled. We demonstrate the potential and robustness of this new implementation by addressing several paradigmatic 2D and 3D boundary value problems. The numerical examples show how the current implementation can be used to reproduce numerical and experimental results from the literature, and efficiently capture advanced features such as complex crack trajectories, crack nucleation from arbitrary sites and contact problems. The code developed is made freely available.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4879
Author(s):  
Mireia Vilanova ◽  
Rubén Escribano-García ◽  
Teresa Guraya ◽  
Maria San Sebastian

A method to find the optimum process parameters for manufacturing nickel-based superalloy Inconel 738LC by laser powder bed fusion (LPBF) technology is presented. This material is known to form cracks during its processing by LPBF technology; thus, process parameters have to be optimized to get a high quality product. In this work, the objective of the optimization was to obtain samples with fewer pores and cracks. A design of experiments (DoE) technique was implemented to define the reduced set of samples. Each sample was manufactured by LPBF with a specific combination of laser power, laser scan speed, hatch distance and scan strategy parameters. Using the porosity and crack density results obtained from the DoE samples, quadratic models were fitted, which allowed identifying the optimal working point by applying the response surface method (RSM). Finally, five samples with the predicted optimal processing parameters were fabricated. The examination of these samples showed that it was possible to manufacture IN738LC samples free of cracks and with a porosity percentage below 0.1%. Therefore, it was demonstrated that RSM is suitable for obtaining optimum process parameters for IN738LC alloy manufacturing by LPBF technology.


1999 ◽  
Vol 15 (2) ◽  
pp. 57-68
Author(s):  
Huang Hsing Pan

ABSTRACTBased on the weight function theory and Hutchinson's technique, the analytic form of the toughness change near a crack-tip is derived. The inhomogeneity toughening is treated as an average quantity calculated from the mean-field approach. The solutions are suitable for the composite materials with moderate concentration as compared with Hutchinson's lowest order formula. The composite has the more toughened property if the matrix owns the higher value of the Poisson ratio. The composite with thin-disc inclusions obtains the highest toughening and that with spheres always provides the least effective one. For the microcrack toughening, the variations of the crack shape do not significantly affect the toughness change if the Budiansky and O'Connell crack density parameter is used. The explicit forms for three types of the void toughening and two types of the microcrack toughening are also shown.


2012 ◽  
Vol 136 (1) ◽  
pp. 015101 ◽  
Author(s):  
Albert A. Smith ◽  
Björn Corzilius ◽  
Alexander B. Barnes ◽  
Thorsten Maly ◽  
Robert G. Griffin

Author(s):  
N Carrere ◽  
N Tual ◽  
T Bonnemains ◽  
E Lolive ◽  
P Davies

In this study, a damage model that accounts for the effect of seawater ageing is proposed. The model is based on a failure criterion that takes into account the effect of the ply thickness, while the kinetics of the damage development are based on a Finite Fracture Mechanics approach. The stiffness degradation is identified by a multiscale approach. The parameters of the model are physically based which facilitates the identification and the coupling with the ageing. These and their evolution as a function of the time of immersion in seawater have been identified for a carbon/epoxy composite. The changes in crack density as a function of the applied load for three ageing times are quite well predicted by the model. The model explains why the damage threshold is strongly influenced by the ageing while the kinetics of the crack propagation remain quasi-constant.


2013 ◽  
Vol 196 (1) ◽  
pp. 22-33 ◽  
Author(s):  
Inmaculada Serrano ◽  
Federico Torcal ◽  
José Morales

Sign in / Sign up

Export Citation Format

Share Document