Evaluation of meat, fruit and vegetables from retail stores in five United Kingdom regions as sources of extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant Escherichia coli

2017 ◽  
Vol 241 ◽  
pp. 283-290 ◽  
Author(s):  
L.P. Randall ◽  
M.P Lodge ◽  
N.C. Elviss ◽  
F.L. Lemma ◽  
K.L. Hopkins ◽  
...  
PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241776
Author(s):  
Babatunde O. Ogunbosi ◽  
Clinton Moodley ◽  
Preneshni Naicker ◽  
James Nuttall ◽  
Colleen Bamford ◽  
...  

Introduction There are few studies describing colonisation with extended spectrum beta-lactamase-producing Enterobacterales (ESBL-PE) and carbapenem-resistant Enterobacterales (CRE) among children in sub-Saharan Africa. Colonisation often precedes infection and multi-drug-resistant Enterobacterales are important causes of invasive infection. Methods In this prospective cross-sectional study, conducted between April and June 2017, 200 children in a tertiary academic hospital were screened by rectal swab for EBSL-PE and CRE. The resistance-conferring genes were identified using polymerase chain reaction technology. Risk factors for colonisation were also evaluated. Results Overall, 48% (96/200) of the children were colonised with at least one ESBL-PE, 8.3% (8/96) of these with 2 ESBL-PE, and one other child was colonised with a CRE (0.5% (1/200)). Common colonising ESBL-PE were Klebsiella pneumoniae (62.5%, 65/104) and Escherichia coli (34.6%, 36/104). The most frequent ESBL-conferring gene was blaCTX-M in 95% (76/80) of the isolates. No resistance- conferring gene was identified in the CRE isolate (Enterobacter cloacae). Most of the Klebsiella pneumoniae isolates were susceptible to piperacillin/tazobactam (86.2%) and amikacin (63.9%). Similarly, 94.4% and 97.2% of the Escherichia coli isolates were susceptible to piperacillin/tazobactam and amikacin, respectively. Hospitalisation for more than 7 days before study enrolment was associated with ESBL-PE colonisation. Conclusion Approximately half of the hospitalised children in this study were colonised with ESBL-PE. This highlights the need for improved infection prevention and control practices to limit the dissemination of these microorganisms.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 406
Author(s):  
Zuhura I. Kimera ◽  
Fauster X. Mgaya ◽  
Gerald Misinzo ◽  
Stephen E. Mshana ◽  
Nyambura Moremi ◽  
...  

We determined the phenotypic profile of multidrug-resistant (MDR) Escherichia coli isolated from 698 samples (390 and 308 from poultry and domestic pigs, respectively). In total, 562 Enterobacteria were isolated. About 80.5% of the isolates were E. coli. Occurrence of E. coli was significantly higher among domestic pigs (73.1%) than in poultry (60.5%) (p = 0.000). In both poultry and domestic pigs, E. coli isolates were highly resistant to tetracycline (63.5%), nalidixic acid (53.7%), ampicillin (52.3%), and trimethoprim/sulfamethoxazole (50.9%). About 51.6%, 65.3%, and 53.7% of E. coli were MDR, extended-spectrum beta lactamase-producing enterobacteriaceae (ESBL-PE), and quinolone-resistant, respectively. A total of 68% of the extended-spectrum beta lactamase (ESBL) producers were also resistant to quinolones. For all tested antibiotics, resistance was significantly higher in ESBL-producing and quinolone-resistant isolates than the non-ESBL producers and non-quinolone-resistant E. coli. Eight isolates were resistant to eight classes of antimicrobials. We compared phenotypic with genotypic results of 20 MDR E. coli isolates, ESBL producers, and quinolone-resistant strains and found 80% harbored blaCTX-M, 15% aac(6)-lb-cr, 10% qnrB, and 5% qepA. None harbored TEM, SHV, qnrA, qnrS, qnrC, or qnrD. The observed pattern and level of resistance render this portfolio of antibiotics ineffective for their intended use.


2011 ◽  
Vol 2 (1) ◽  
pp. 8
Author(s):  
Ronak Bakhtiari ◽  
Jalil Fallah Mehrabadi ◽  
Hedroosha Molla Agamirzaei ◽  
Ailar Sabbaghi ◽  
Mohammad Mehdi Soltan Dallal

Resistance to b-lactam antibiotics by gramnegative bacteria, especially <em>Escherichia coli (E. coli)</em>, is a major public health issue worldwide. The predominant resistance mechanism in gram negative bacteria particularly <em>E. coli </em>is via the production of extended spectrum beta lactamase (ESBLs) enzymes. In recent years, the prevalence of b-lactamase producing organisms is increased and identification of these isolates by using disk diffusion method and no-one else is not satisfactory. So, this investigation focused on evaluating the prevalence of ESBL enzymes by disk diffusion method and confirmatory test (Combined Disk). Five hundred clinical samples were collected and 200 <em>E. coli </em>isolates were detected by standard biochemical tests. To performing initial screening of ESBLs was used from Disk diffusion method on <em>E. coli </em>isolates. A confirmation test (Combined Disk method) was performed on isolates of resistant to cephalosporin's indicators. Up to 70% isolates exhibited the Multi Drug Resistance phenotype. In Disk diffusion method, 128(64%) <em>E. coli </em>isolates which resistant to ceftazidime and cefotaxime while in Combined Disk, among 128 screened isolates, 115 (89.8%) isolates were detected as ESBLs producers. This survey indicate beta lactamase enzymes are playing a significant role in antibiotic resistance and correct detection of them in phenotypic test by using disk diffusion and combined Disk is essential for accurate recognition of ESBLs.


Sign in / Sign up

Export Citation Format

Share Document