New approach for the removal of mature biofilms formed by wild strains of Listeria monocytogenes isolated from food contact surfaces in an Iberian pig processing plant

2020 ◽  
Vol 323 ◽  
pp. 108595 ◽  
Author(s):  
C. Ripolles-Avila ◽  
M. Ramos-Rubio ◽  
A.S. Hascoët ◽  
M. Castillo ◽  
J.J. Rodríguez-Jerez
2004 ◽  
Vol 67 (12) ◽  
pp. 2688-2697 ◽  
Author(s):  
RENATA IVANEK ◽  
YRJÖ T. GRÖHN ◽  
MARTIN WIEDMANN ◽  
MARTIN T. WELLS

Listeriosis is a foodborne disease caused by the bacterium Listeria monocytogenes. The food industry and government agencies devote considerable resources to reducing contamination of ready-to-eat foods with L. monocytogenes. Because inactivation treatments can effectively eliminate L. monocytogenes present on raw materials, postprocessing cross-contamination from the processing plant environment appears to be responsible for most L. monocytogenes food contamination events. An improved understanding of cross-contamination pathways is critical to preventing L. monocytogenes contamination. Therefore, a plant-specific mathematical model of L. monocytogenes cross-contamination was developed, which described the transmission of L. monocytogenes contamination among food, food contact surfaces, employees' gloves, and the environment. A smoked fish processing plant was used as a model system. The model estimated that 10.7% (5th and 95th percentile, 0.05% and 22.3%, respectively) of food products in a lot are likely to be contaminated with L. monocytogenes. Sensitivity analysis identified the most significant input parameters as the frequency with which employees' gloves contact food and food contact surfaces, and the frequency of changing gloves. Scenario analysis indicated that the greatest reduction of the within-lot prevalence of contaminated food products can be achieved if the raw material entering the plant is free of contamination. Zero contamination of food products in a lot was possible but rare. This model could be used in a risk assessment to quantify the potential public health benefits of in-plant control strategies to reduce cross-contamination.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 717
Author(s):  
Niels Demaître ◽  
Geertrui Rasschaert ◽  
Lieven De Zutter ◽  
Annemie Geeraerd ◽  
Koen De Reu

The purpose of this study was to investigate the L. monocytogenes occurrence and genetic diversity in three Belgian pork cutting plants. We specifically aim to identify harborage sites and niche locations where this pathogen might occur. A total of 868 samples were taken from a large diversity of food and non-food contact surfaces after cleaning and disinfection (C&D) and during processing. A total of 13% (110/868) of environmental samples tested positive for L. monocytogenes. When looking in more detail, zone 3 non-food contact surfaces were contaminated more often (26%; 72/278) at typical harborage sites, such as floors, drains, and cleaning materials. Food contact surfaces (zone 1) were less frequently contaminated (6%; 25/436), also after C&D. PFGE analysis exhibited low genetic heterogeneity, revealing 11 assigned clonal complexes (CC), four of which (CC8, CC9, CC31, and CC121) were predominant and widespread. Our data suggest (i) the occasional introduction and repeated contamination and/or (ii) the establishment of some persistent meat-adapted clones in all cutting plants. Further, we highlight the importance of well-designed extensive sampling programs combined with genetic characterization to help these facilities take corrective actions to prevent transfer of this pathogen from the environment to the meat.


Food Control ◽  
2018 ◽  
Vol 92 ◽  
pp. 240-248 ◽  
Author(s):  
C. Ripolles-Avila ◽  
A.S. Hascoët ◽  
A.E. Guerrero-Navarro ◽  
J.J. Rodríguez-Jerez

2013 ◽  
Vol 76 (7) ◽  
pp. 1279-1282 ◽  
Author(s):  
WALID Q. ALALI ◽  
DONALD W. SCHAFFNER

The objective of this study was to evaluate the relationship between prevalence of Listeria monocytogenes as an outcome and Listeria spp. as an explanatory variable by food products, food contact surfaces, and nonfood contact surfaces in seafood processing plants by using peer-reviewed published data. Nine sets of prevalence data of L. monocytogenes and Listeria spp. were collected from published studies and used for the analyses. Based on our analysis, the relationship between L. monocytogenes prevalence and Listeria spp. prevalence in food products (incoming raw materials and finish products) was significant (P = 0.04) with (low) R2 = 0.36. Furthermore, Listeria spp. were not a good indicator for L. monocytogenes when testing food contact surfaces (R2= 0.10). Listeria spp. were a good indicator for L. monocytogenes only on nonfood contact surfaces (R2= 0.90). On the other hand, the presence of Listeria spp. on food contact surfaces (R2= 0.002) and nonfood contact surfaces (R2= 0.03) was not a good indicator for L. monocytogenes presence in food products. In general, prevalence of Listeria spp. does not seem to be a good indicator for L. monocytogenes prevalence in seafood processing plants.


2012 ◽  
Vol 75 (6) ◽  
pp. 1077-1082 ◽  
Author(s):  
DIEGO GÓMEZ ◽  
AGUSTÍN ARIÑO ◽  
JUAN J. CARRAMIÑANA ◽  
CARMINA ROTA ◽  
JAVIER YANGÜELA

A number of techniques exist for microbiological sampling of food processing environments in food industries. In the present study the efficacies of nine sampling procedures for the recovery of Listeria monocytogenes from food contact surfaces, including a new sampling device consisting of a miniroller, were evaluated and compared. A stainless steel table was inoculated with L. monocytogenes strain 935 (serovar 4b, human origin) and L. monocytogenes strain 437/07 (serovar 1/2b, food origin), at 105 CFU/100 cm2. L. monocytogenes strain 935 was best recovered with the minirollers (recovery of up to 6.27%), while poor recoveries (<0.30%) were obtained with the towel (one-ply composite tissue), alginate swab, metallic swab, and Petrifilm methods. In the case of L. monocytogenes strain 437/07 the replicate organism detection and counting (RODAC) ALOA contact plates yielded the best recoveries (4.15%), followed by the minirollers (up to 1.52%). Overall, recovery percentages with the minirollers were higher with stomacher homogenization than with Vibromatic agitation. The recovery percentages obtained for the Listeria strain of human origin were higher than those obtained with the food strain for all sampling procedures except Petrifilm and RODAC ALOA. With the miniroller device coated with wool fiber, the recovery of L. monocytogenes can be improved from 2 to 17 times over recoveries obtained with the sponge and cotton swab. This is the first report of a miniroller device for microbiological sampling in the available literature. The novel sampling procedure is convenient to apply on surfaces, is cost-effective, and results in better recovery of L. monocytogenes than do the conventional methods.


Sign in / Sign up

Export Citation Format

Share Document