CFD modeling and analysis of the influence factors of liquid hydrogen spills in open environment

2017 ◽  
Vol 42 (1) ◽  
pp. 732-739 ◽  
Author(s):  
Tao Jin ◽  
Mengxi Wu ◽  
Yuanliang Liu ◽  
Gang Lei ◽  
Hong Chen ◽  
...  
2012 ◽  
Vol 602-604 ◽  
pp. 1757-1760
Author(s):  
Qiang Huang ◽  
Kun Wei

The rotation accuracy of the machine spindle is an important accuracy index, and has numerous influence factors. According to the structure characteristic of the spindle system, an integrated model of the spindle rotation error is established in this paper. By this model, the impact law and cumulative effect of various error sources on spindle rotation accuracy can be analyzed. Taking the lathe spindles as an example, the modeling and analysis method for spindle error are introduced. Visualization of spindle center track is achieved by programming.


2014 ◽  
Vol 264 ◽  
pp. 149-157 ◽  
Author(s):  
Rim Guizani ◽  
Inès Mokni ◽  
Hatem Mhiri ◽  
Philippe Bournot

Author(s):  
Van P. Carey

This paper explores the theoretical and computational challenges associated with modeling of flow, momentum transport, and energy conversion processes in disk rotor drag turbine expanders. This category of expander devices, also known as Tesla turbines, has distinct advantages for Rankine power generation using low temperature heat from renewable source such as solar, waste heat, or geothermal steam or hot water. Specifically, the nozzle and rotor designs and the overall expander can be simple to manufacture, low cost, and durable, making this type of expander an attractive option in green energy technology applications where low maintenance costs and rapid capital investment payback are important qualities. Efficient energy conversion performance in rotor disk drag expanders requires that the nozzle efficiently convert flow exergy to fluid kinetic energy, and the rotor be designed to efficiently convert fluid angular momentum to shaft torque and power. To achieve these goals, modeling and analysis tools must provide the designer with a means to predict the performance of these components that accurately represents the physics, and can be effectively used to illuminate the parametric trends in performance. Two categories of modeling are examined in this paper: (1) computational fluid dynamics (CFD) modeling, and (2) more idealized one- and two-dimensional analysis frameworks. The advantages and disadvantages of these two approaches are examined here for the specific flows of interest in this type of expander design. The implications of model predictions for optimal design of disk rotor expanders for green energy applications are also discussed.


Author(s):  
X. Brun ◽  
S. N. Melkote

This paper presents the modeling and analysis of the pressure distribution and lifting force generated by a Bernoulli gripper when handling flexible substrates such as thin silicon wafers. A Bernoulli gripper is essentially a radial airflow nozzle used to handle large and small, rigid and nonrigid materials by creating a low pressure region or vacuum between the gripper and material. Previous studies on Bernoulli gripping have analyzed the pressure distribution and lifting force for handling thick substrates that undergo negligible deformation. Since the lifting force produced by the gripper is a function of the gap between the handled object and the gripper, any deformation of the substrate will influence the gap and consequently the pressure distribution and lifting force. In this paper, the effect of substrate (thin silicon wafer) flexibility on the equilibrium wafer deformation, radial pressure distribution and lifting force is modeled and analyzed using a combination of computational fluid dynamics (CFD) modeling and finite element analysis. The equilibrium wafer deformation for different air flow rates is compared with experimental data and is shown to be in good agreement. In addition, the effect of wafer deformation on the pressure and lifting force are shown to be significant at higher volumetric airflow rates. The modeling and analysis approach presented in this paper is particularly useful for evaluating the effect of gripper variables on the handling stresses generated in thin silicon wafers and for gripper design optimization.


Author(s):  
V. Vijayan ◽  
M. Vivekanandan ◽  
R. Venkatesh ◽  
K. Rajaguru ◽  
A. Godwin Antony

2011 ◽  
Vol 110-116 ◽  
pp. 4343-4350 ◽  
Author(s):  
Xiu Ling Ji ◽  
Hai Peng Wang ◽  
Shi Ming Zeng ◽  
Chen Yang Jia

A computational study performed for a canard guided spin stabilized projectile using finite volume TVD schemes is described in this paper. Computational Fluid Dynamics (CFD) modeling and analysis of the spinning projectile with fixed canard are conducted to determine the lateral-directional aerodynamic coefficients at three supersonic speeds and various angles of attack. The analyses provide a detailed understanding of the effects of canard with different circumferential position on lateral-directional aerodynamic coefficients, and the results show that side force coefficient and yaw moment coefficient vary periodically with the circumferential position angles of canard.


Sign in / Sign up

Export Citation Format

Share Document