Pd nanoparticles anchoring to core-shell Fe3O4@SiO2-porous carbon catalysts for ammonia borane hydrolysis

2020 ◽  
Vol 45 (3) ◽  
pp. 1671-1680 ◽  
Author(s):  
Sai Liu ◽  
Yong-Ting Li ◽  
Xiu-Cheng Zheng ◽  
Xin-Xin Guan ◽  
Xiao-Li Zhang ◽  
...  
2020 ◽  
Vol 44 (7) ◽  
pp. 3021-3027 ◽  
Author(s):  
Min-Jie Chen ◽  
Dai-Xue Zhang ◽  
Dan Li ◽  
Shan-Chao Ke ◽  
Xiao-Chen Ma ◽  
...  

In situ synthesis of core–shell carbon enclosed CoNi alloys achieves efficient heterogeneous catalysis.


2017 ◽  
Vol 53 (68) ◽  
pp. 9490-9493 ◽  
Author(s):  
Shaolong Zhang ◽  
Aijuan Han ◽  
Yanliang Zhai ◽  
Jian Zhang ◽  
Weng-Chon Cheong ◽  
...  

We prepared sintering- and leaching-resistant core–shell nanocatalysts which exhibited excellent catalytic activity and recyclability for oxidation of benzyl alcohol.


Catalysts ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Farzeen Sakina ◽  
Carlos Fernandez-Ruiz ◽  
Jorge Bedia ◽  
Luisa Gomez-Sainero ◽  
Richard Baker

Ordered mesoporous carbon (OMC) was employed as a support for palladium nanoparticles in catalysts for the gas phase hydrodechlorination (HDC) of trichloromethane (TCM). 1 wt% palladium was incorporated using three methods: incipient wetness (IW); a dilute solution (DS) method; and a solid-liquid (SL) method. The effect of the preparation method on catalyst structure and activity was investigated. Catalyst composition and nanostructure were studied using gas physisorption, high specification transmission electron microscopy and X-ray photoelectron spectroscopy. Catalytic conversion and product selectivities were determined in steady-state activity tests at temperatures between 70 and 300 °C. Two of the catalysts (IW and DS) showed excellent dispersion of fine Pd nanoparticles of average diameter ~2 nm. These materials showed excellent activity for HDC of TCM which compares favourably with the performance reported for Pd on amorphous carbon catalysts. In addition, they showed relatively high selectivities to the more valuable higher hydrocarbons. However, the SL method gave rise to catalysts with larger particles (~3 nm) and a less uniform palladium distribution. This resulted in lower conversion and lower selectivities to higher hydrocarbons and in more severe catalyst deactivation at the highest reaction temperatures.


2017 ◽  
Vol 5 (10) ◽  
pp. 4835-4841 ◽  
Author(s):  
Pradip Pachfule ◽  
Xinchun Yang ◽  
Qi-Long Zhu ◽  
Nobuko Tsumori ◽  
Takeyuki Uchida ◽  
...  

High-temperature pyrolysis of Ru nanoparticle-encapsulated MOF (Ru@HKUST-1) afforded ultrafine Cu/Ru nanoparticle-embedded porous carbon composites (Cu/Ru@C), which show high catalytic activity for ammonia borane hydrolysis.


RSC Advances ◽  
2016 ◽  
Vol 6 (17) ◽  
pp. 13873-13880 ◽  
Author(s):  
Xiaoling Lang ◽  
Meiqin Shi ◽  
Yekun Jiang ◽  
Huan Chen ◽  
Chunan Ma

The Pt–WC@C demonstrates higher electrochemical activity, which could be attributed to the better dispersed Pt on WC which leads to the improved synergistic effect between WC and Pt.


2011 ◽  
Vol 172-174 ◽  
pp. 670-675 ◽  
Author(s):  
Ivailo S. Atanasov ◽  
Marc Hou

We address the question of the evolution of a nanostructured system in a metastable state to equilibrium. To this purpose, we use the case study of the transition of an AucorePdshell nanoalloy cluster containing up to about 600 atoms toward the equilibrium Au segregated configuration. We start from a molecular dynamics approach with an embedded atom potential. The way the transition develops at low temperatures is found to be very sensitive to the cluster morphology and the way energy is exchanged with the environment. The transition of icosahedral inverse core-shell Au-Pd clusters is predicted to nucleate locally at the surface contrary to clusters with other morphologies, and starting at lower temperatures compared to them.


Sign in / Sign up

Export Citation Format

Share Document