A detailed investigation of the effect of hydrogen on the mechanical response and microstructure of Al 7075 alloy under medium strain rate impact loading

2020 ◽  
Vol 45 (46) ◽  
pp. 25509-25522 ◽  
Author(s):  
Burak Bal ◽  
Bilge Okdem ◽  
Ferdi Caner Bayram ◽  
Murat Aydin
AIP Advances ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 035145
Author(s):  
Heng-ning Zhang ◽  
Hai Chang ◽  
Jun-qiang Li ◽  
Xiao-jiang Li ◽  
Han Wang

2021 ◽  
Vol 11 (24) ◽  
pp. 11925
Author(s):  
Yi Li ◽  
Youwei Zhang ◽  
Haiwei Dong ◽  
Wenjie Cheng ◽  
Chaoming Shi ◽  
...  

By employing ordinary Portland cement as a matrix and PZT-5H piezoelectric ceramic as the functional body, 1-3 and 2-2 cement-based piezoelectric composites were prepared. Quasi-static compression tests were performed along with dynamic impact loading tests to study the electro-mechanical response characteristics of 1-3 and 2-2 cement-based piezoelectric composites. The research results show that both composites exhibit strain rate effects under quasi-static compression and dynamic impact loading since they are strain-rate sensitive materials. The sensitivity of the two composites has a non-linear mutation point: in the quasi-static state, the sensitivity of 1-3 and 2-2 composites is 157 and 169 pC/N, respectively; in the dynamic state, the respective sensitivity is 323 and 296 pC/N. Although the sensitivity difference is not significant, the linear range of the 2-2 composite is 24.8% and 61.3% larger than that of the 1-3 composite under quasi-static compression and dynamic impact loading, respectively. Accordingly, the 2-2 composite exhibits certain advantages as a sensor material, irrespective of whether it is subjected to quasi-static or dynamic loading.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jinbao Tang ◽  
Sheng Li ◽  
Guangsheng Qin ◽  
Wanjie Lu ◽  
Zhijie Zhu ◽  
...  

To reveal the dynamic mechanical response and energy dissipation behavior of rockburst-prone coal samples under impact loading, the compressive experiments on Xinzhouyao coals (prone) and Machang coals (nonprone) under different impact loadings were carried out using the Split Hopkinson Pressure Bar (SHPB). The dynamic mechanical properties were studied, including dynamic elastic modulus, strain rate, peak stress, peak strain, dynamic increment factor, and energy dissipation. The results show that the dynamic elastic modulus, peak stress, and peak strain of both prone and nonprone coals perform an obvious correlation with the increase of strain rate. The strain rate strengthening effect on the dynamic elastic modulus and compressive strength of rockburst-prone coal samples are more significant, reflected by the greater increment with the increase of strain rate, while the dynamic increment factors of both prone and nonprone coals show apparent strain rate strengthening. The incident, reflected, and transmitted energy of both two coals linearly increases with the impact velocity, although the increased rate may be different. The dissipated energy of rockburst-prone coal samples increases faster, while the rate of the increase of the dissipated energy is more stable with strain rate. The results may provide an important reference for revealing the failure law of engineering-scaled coal mass suffered by rockburst.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1189
Author(s):  
Yingjue Xiong ◽  
Qinmeng Luan ◽  
Kailun Zheng ◽  
Wei Wang ◽  
Jun Jiang

During plastic deformation, the change of structural states is known to be complicated and indeterminate, even in single crystals. This contributes to some enduring problems like the prediction of deformed texture and the commercial applications of such material. In this work, plane strain compression (PSC) tests were designed and implemented on single crystal pure aluminum to reveal the deformation mechanism. PSC tests were performed at different strain rates under strain control in either one-directional or two-directional compression. The deformed microstructures were analyzed according to the flow curve and the electron back-scattered diffraction (EBSD) mappings. The effects of grain orientation, strain rate, and strain path on the deformation and mechanical response were analyzed. Experimental results revealed that the degree of lattice rotation of one-dimensional compression mildly dependents on cube orientation, but it is profoundly sensitive to the strain rate. For two-dimensional compression, the softening behavior is found to be more pronounced in the case that provides greater dislocations gliding freeness in the first loading. Results presented in this work give new insights into aluminum deformation, which provides theoretical support for forming and manufacturing of aluminum.


2007 ◽  
Vol 17 (1) ◽  
pp. 126-132 ◽  
Author(s):  
Wen-jiao GAO ◽  
Ren-liang SHAN ◽  
Gong-cheng WANG ◽  
Rui-qiang CHENG

2011 ◽  
Vol 32 (3) ◽  
pp. 1298-1305 ◽  
Author(s):  
P. Das ◽  
R. Jayaganthan ◽  
I.V. Singh
Keyword(s):  
Al 7075 ◽  

Sign in / Sign up

Export Citation Format

Share Document