The energy absorption behavior of hybrid composite laminates containing nano-fillers under ballistic impact

2016 ◽  
Vol 96 ◽  
pp. 11-22 ◽  
Author(s):  
Edison E. Haro ◽  
Akindele G. Odeshi ◽  
Jerzy A. Szpunar
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Elias Randjbaran ◽  
Rizal Zahari ◽  
Nawal Aswan Abdul Jalil ◽  
Dayang Laila Abang Abdul Majid

Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers.


2021 ◽  
Vol 1165 ◽  
pp. 47-64
Author(s):  
Saurabh S. Kumar ◽  
Rajesh G. Babu ◽  
U. Magarajan

In this paper, the post ballistic impact behaviour of kevlar-glass fibre hybrid composite laminates was investigated against 9×19 mm projectile. Eight different types of composite laminates with different ratios of kevlar woven fibre to glass fibre were fabricated using hand lay-up with epoxy matrix. Ballistic behaviour like ballistic Limit (V50), energy absorption, specific energy absorption and Back Face Signature (BFS) were studied after bullet impact. The results indicated that as the Percentage of glass fibre is increased there was a linear increment in the ballistic behaviour. Addition of 16% kevlar fabric, composite sample meets the performance requirement of NIJ0101.06 Level III-A. Since the maximum specific energy absorption was observed in Pure Kevlar samples and the adding of glass fibre increases the weight and Areal Density of the sample, further investigations need to be carried out to utilize the potential of glass fibre for ballistic applications.


2017 ◽  
Vol 173 ◽  
pp. 293-298 ◽  
Author(s):  
P. Rama Subba Reddy ◽  
T. Sreekantha Reddy ◽  
K. Mogulanna ◽  
I. Srikanth ◽  
V. Madhu ◽  
...  

Author(s):  
Elias Randjbaran

In the current study, the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption, which were fabricated from Kevlar, carbon, glass fibres and resin have been experimentally investigated at the high velocity ballistic impact conditions. All the samples have equal mass, shape and density, but they have different stacking sequence layers. After running the ballistic test in the same conditions, the final velocities of the bullets showed that how much energy absorbed by the samples. The energy absorption of each sample through the ballistic impact has been calculated, accordingly , the decent ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties.


2021 ◽  
pp. 1-11
Author(s):  
Madhu Puttegowda ◽  
Sanjay Mavinkere Rangappa ◽  
Anish Khan ◽  
Salma Ahmed Al-Zahrani ◽  
Ahmed Al Otaibi ◽  
...  

Author(s):  
Mehrdad Hossein Alizadeh ◽  
Mehdi Kamali Dolatabadi ◽  
Saeed Shaikhzadeh Najar ◽  
Reza Eslami-Farsani

2015 ◽  
Vol 76 (3) ◽  
Author(s):  
Norazean Shaari ◽  
Aidah Jumahat ◽  
M. Khafiz M. Razif

In this paper, the impact behavior of Kevlar/glass fiber hybrid composite laminates was investigated by performing the drop weight impact test (ASTM D7136). Composite laminates were fabricated using vacuum bagging process with an epoxy matrix reinforced with twill Kevlar woven fiber and plain glass woven fiber. Four different types of composite laminates with different ratios of Kevlar to glass fiber (0:100, 20:80, 50:50 and 100:0) were manufactured. The effect of Kevlar/glass fiber content on the impact damage behavior was studied at 43J nominal impact energy. Results indicated that hybridization of Kevlar fiber to glass fiber improved the load carrying capability, energy absorbed and damage degree of composite laminates with a slight reduction in deflection. These results were further supported through the damage pattern analysis, depth of penetration and X-ray evaluation tests. Based on literature work, studies that have been done to investigate the impact behaviour of woven Kevlar/glass fiber hybrid composite laminates are very limited. Therefore, this research concentrates on the effect of Kevlar on the impact resistance properties of woven glass fibre reinforced polymer composites.


Sign in / Sign up

Export Citation Format

Share Document