scholarly journals The Effects of Stacking Sequence Layers of Hybrid Composite Materials in Energy Absorption under the High Velocity Ballistic Impact Conditions: An Experimental Investigation

Author(s):  
Elias Randjbaran
Author(s):  
Elias Randjbaran

In the current study, the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption, which were fabricated from Kevlar, carbon, glass fibres and resin have been experimentally investigated at the high velocity ballistic impact conditions. All the samples have equal mass, shape and density, but they have different stacking sequence layers. After running the ballistic test in the same conditions, the final velocities of the bullets showed that how much energy absorbed by the samples. The energy absorption of each sample through the ballistic impact has been calculated, accordingly , the decent ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Elias Randjbaran ◽  
Rizal Zahari ◽  
Nawal Aswan Abdul Jalil ◽  
Dayang Laila Abang Abdul Majid

Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers.


2020 ◽  
Vol 249 ◽  
pp. 112588 ◽  
Author(s):  
Victor Avisek Chatterjee ◽  
Ramakant Saraswat ◽  
Sanjeev Kumar Verma ◽  
Debarati Bhattacharjee ◽  
Ipsita Biswas ◽  
...  

2014 ◽  
Vol 897 ◽  
pp. 93-98
Author(s):  
Martina Drdlová ◽  
Vladan Prachař ◽  
Jaroslav Buchar

This paper describes experimental investigation on the response of new advanced materials to low and high velocity load. Foams were designed using two types of porous lightweight spherical raw materials with dimensions of 30-100 μm, combined with polymer matrix. Prism shaped specimens were prepared and loaded to obtain physical-mechanical parameters bulk density, compressive and flexural strength under quasistatic load and impact strength. The load-displacement data were captured. The slab specimens were prepared of selected materials, covered with a layer of ballistic laminates on both surfaces to form the sandwich element and were subjected to the blast load of 100 g Semtex 1A from a distance of 10 cm. Blast energy absorption was measured on test rig STAND T0-B according to methodology M-T0-B VTÚO 10_09.


2021 ◽  
pp. 152808372199986
Author(s):  
Zeynab Behroozi ◽  
Hooshang Nosraty ◽  
Majid Tehrani

The present research aimed to investigate the effect of stitching angle and stacking sequence of stitched layers on high velocity impact behavior of composites reinforced by glass woven fabrics. To study the effect of stitching angle on ballistic impact behavior, six different angles of (0°), (90°), (45°), (0°,90°), (±45°) and (0°,90°,±45°) were chosen as stitching angles. These stitching angles were applied on eight layers of glass woven fabric. To study the effect of stacking sequence of stitched layers, a different number of layers were stitched together with the angle of 0°. Unstitched and stitched composites were exposed to high velocity impact with 180 m/s using a spherical projectile. The residual velocity of projectile and dimensions of damage area on the composites’ front and back sides were measured. It was found that the sample with the 45° stitching angle had the best behavior against ballistic impact and its energy absorption was significantly higher than the other samples. Stitching also reduces damage area in front and back sides of the composites and inhibits delamination.


Author(s):  
Clifton Stephen ◽  
B. Shivamurthy ◽  
Abdel-Hamid I. Mourad ◽  
Rajiv Selvam

AbstractIn this study, non-hybrid and hybrid (Kevlar, carbon and glass) fabric epoxy composite laminates were fabricated with different stacking sequences by hand lay-up followed by hot-compression molding. Experimental tests were conducted to investigate tensile, flexural, and hardness characteristics. It was found that the stacking sequence did not significantly affect the tensile strength and hardness values of the composites; however, it affected their flexural strength. Damage morphology of the specimens through SEM images showed that the major damage mechanisms in the composites were delamination, fiber breakage, pull-out, and matrix cracking. Based on the static experimental results, the high-velocity impact behavior was investigated through simulation study using LS-DYNA finite element analysis (FEA) software. To study the ballistic impact, a steel projectile with a hemispherical penetrating edge at impact velocities of 100 m.s−1, 250 m.s−1, and 350 m.s−1 was considered. Among non-hybrid fabric epoxy composite specimens, Kevlar/epoxy specimen was found to have the highest impact energy absorption followed by carbon/epoxy and glass/epoxy, respectively. Regarding the hybrid fabric epoxy composite specimens, the ones with Kevlar plies in the rear face exhibited better energy absorption compared to other stacking sequences. The non-hybrid glass/epoxy specimen had the lowest energy absorption and highest post-impact residual velocity of projectile among all specimens. From the FEA results, it was noted that impact resistance of hybrid composites improved when Kevlar fabric was placed in the rear layer. Thus, the stacking sequence was observed to be of substantial importance in the development of fabric-reinforced composite laminates for high-velocity impact applications.


2018 ◽  
Author(s):  
Kai Yi ◽  
Jianbo Sun ◽  
Zhiyong Yang ◽  
Hongjun Guo ◽  
Jian Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document