Size effect modelling for dynamic biaxial compressive strength of concrete: Influence of lateral stress ratio and strain rate

Author(s):  
Liu Jin ◽  
Jian Li ◽  
Wenxuan Yu ◽  
Xiuli Du
1978 ◽  
Vol 8 (2) ◽  
pp. 181-190 ◽  
Author(s):  
Y. Tanigawa ◽  
K. Yamada

2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Keun-Hyeok Yang ◽  
Yongjei Lee ◽  
Ju-Hyun Mun

In this study, a stress-strain model for unconfined concrete with the consideration of the size effect was proposed. The compressive strength model that is based on the function of specimen width and aspect ratio was used for determining the maximum stress. In addition, in stress-strain relationship, a strain at the maximum stress was formulated as a function of compressive strength considering the size effect using the nonlinear regression analysis of data records compiled from a wide variety of specimens. The descending branch after the maximum stress was formulated with the consideration of the effect of decreasing area of fracture energy with the increase in equivalent diameter and aspect ratio of the specimen in the compression damage zone (CDZ) model. The key parameter for the slope of the descending branch was formulated as a function of equivalent diameter and aspect ratio of the specimen, concrete density, and compressive strength of concrete. Consequently, a rational stress-strain model for unconfined concrete was proposed. This model reflects trends that the maximum stress and strain at the peak stress decrease and the slope of the descending branch increases, when the equivalent diameter and aspect ratio of the specimen increase. The proposed model agrees well with the test results, irrespective of the compressive strength of concrete, concrete type, equivalent diameter, and aspect ratio of the specimen.


2010 ◽  
Vol 168-170 ◽  
pp. 2619-2624
Author(s):  
Chuan Xiong Liu ◽  
Yu Long Li

Dynamic compressive tests were carried out for concrete specimens after exposure to temperatures 23°C, 400°C, 600°C and 800°C by using Split Hopkinson Pressure Bar(SHPB) apparatus. Cylindrical specimens with 98mm in diameter and 49mm in length were used in tests. The strain rates achieved in tests ranged from 30s-1 to 220s-1. The results showed that the compressive strength increases with increasing strain-rate, but decreases with the increase of temperature. However, the effect of strain-rate on improving the compressive strength of concrete decreases with the increase of temperature. Moreover, the strain-rate has an improvement on the peak strain of concrete, and the accretion rate increases with increasing temperature.


2019 ◽  
Vol 69 (334) ◽  
pp. 184
Author(s):  
Y. Zhang ◽  
L. Yan ◽  
S. Wang ◽  
M. Xu

The quasi-static and dynamic mechanical behaviours of the concrete reinforced by twisting ultra-high molecular weight polyethylene (UHMWPE) fibre bundles with different volume fractions have been investigated. It was indicated that the improved mixing methodology and fibre geometry guaranteed the uniform distribution of fibres in concrete matrix. The UHMWPE fibres significantly enhanced the splitting tensile strength and residual compressive strength of concrete. The discussions on the key property parameters showed that the UHMWPE fibre reinforced concrete behaved tougher than the plain concrete. Owing to the more uniform distribution of fibres and higher bonding strength at fibre/matrix interface, the UHMWPE fibre with improved geometry enhanced the quasi-static splitting tensile strength and compressive strength of concrete more significantly than the other fibres. The dynamic compression tests demonstrated that the UHMWPE fibre reinforced concrete had considerable strain rate dependency. The bonding between fibres and concrete matrix contributed to the strength enhancement under low strain-rate compression.


1985 ◽  
Vol 64 ◽  
Author(s):  
Parviz Soroushian ◽  
Ki-Bong Choi ◽  
Gung Fu

ABSTRACTResults of dynamic tensile strength tests of concrete, produced by the authors and other investigators, were used to study the effects of strain rate on the tensile strength of concrete. The influence of moisture content and compressive strength of concrete, and type of test (splitting tension, flexure, or direct tension) on the strain rate-sensitivity of the tensile strength were evaluated. An empirically developed expression is presented for the dynamic-to-static ratio of concrete tensile strength in terms of the rate of straining.


2010 ◽  
Vol 163-167 ◽  
pp. 1375-1379 ◽  
Author(s):  
Yi Che ◽  
Sheng Long Ban ◽  
Jian Yu Cui ◽  
Geng Chen ◽  
Yu Pu Song

The purpose of this study is to investigate the influence of specimen size and shape on compressive strength of concrete. Concrete cubes, cylinders and prisms with their size ranging from 150mm to 450mm were tested in unaxial compression. Failure patterns and the effect of specimen shape and size on compressive strength of concrete were investigated. In addition, theoretical size effect models, such as the MSEL and MFSL were used to analyze the size effect of concrete strength. It is shown that for specimens tested in this study, the two models are both applicable to predicting the compressive strength of specimens in various sizes with a reasonably good accuracy.


2008 ◽  
Vol 400-402 ◽  
pp. 831-835 ◽  
Author(s):  
Jie Su ◽  
Zuan Yang ◽  
Zhi Fang

81 concrete prism specimens under axial compression were tested to invesgigate the size effect on the axial load stength. Three different kinds of specimens with the dimension 100×100×300mm, 150×150×300mm, 200×200×400mm were tested. The parameters including compressive strength of concrete and aggregate composition are taken into consideration. Three different strength grades of concrete and three different aggregate composition are included in those specimens. The test method are undertaken according to ASTM C 39/C 39M-2005. Based on the test results, a new size effect law for different kinds of concrete in prismatical compressive strength is suggested and those relative parameters on the size effect are discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jun Zhou ◽  
Xiangrui Meng ◽  
Chongyan Liu ◽  
Zhixi Liu ◽  
Wensong Xu ◽  
...  

To study the size effect of rock under quasistatic and dynamic conditions, the changes in compressive strength with the change in specimen size are measured. Cylindrical granite specimens with length-diameter ratios in the range of 0.5∼1 are used for uniaxial compression tests using an RMT testing machine and an SPHB impact testing machine. Under quasistatic loading, the failure modes of the specimens with different length-diameter ratios are different. The larger the size of the specimen structure is, the greater the probability of defects such as joints and micro cracks is and the smaller the influence of the specimen on the distribution of a three-dimensional stress state is. The rock strength decreases with increasing length-diameter ratio. Using the improved Weibull formula, the size of the specimen is expressed by the volume, and the calculated rock strength of different volumes is similar to the compressive strength from the quasistatic tests. Under dynamic loading, the dynamic compressive strengths of the specimens with different length-diameter ratios are similar, and the failure mode of the specimens is different from that under quasistatic loading. Soon after a crack appears in a specimen, the specimen splits. As the size of the specimens decreases, the fragments size to approach the millimeter scale. By improving the Weibull distribution formula and considering variation in strain rate caused by the size of the specimen, the dynamic compressive strength of rocks of different volumes is calculated by introducing the critical strain rate and related parameters, and the results are similar to the experimental dynamic compressive strength obtained. The improved Weibull formula based on the strength size effect can accurately describe the quasistatic and dynamic compressive strength laws.


2021 ◽  
Vol 20 (4) ◽  
pp. 037-046
Author(s):  
Amanda Akram

Various strength characteristics of concrete are considered as fracture parameters. The compressive strength of concrete is of paramount importance when designing concrete structures, whereas tensile strength of concrete is the basic property when estimating cracking resistance of a structure and analysing fracture processes in concrete. When testing the compressive strength of concrete, the results are dependent on the shape and dimensions of used specimens. Some findings reported in the literature suggest that size effect exists also when testing such fracture properties of concrete as tensile strength. Unfortunately this problem is much less recognized and described compared to size effect in compressive test results. In this paper, the experimental investigation is presented on how the length of cylindrical specimens influences the tensile splitting strength of concrete obtained by means of the Brazilian method. Additional variable parameters were: type of aggregate (natural gravel and crushed granite) and cement-water ratio (C/W = 1.8 and C/W = 2.6).  In conducted laboratory experiments a higher splitting tensile strength of concrete was noted for all specimens with nominal dimensions of 150×150 mm, compared to specimens 150×300 mm in size, regardless of type of aggregate or cement-water ratio.


Sign in / Sign up

Export Citation Format

Share Document