Effect of dopant concentration on structural and optical properties Mn doped ZnS films prepared by CBD method

Optik ◽  
2017 ◽  
Vol 136 ◽  
pp. 362-367 ◽  
Author(s):  
D. Talantikite-Touati ◽  
H. Merzouk ◽  
H. Haddad ◽  
A. Tounsi
2019 ◽  
Vol 33 (05) ◽  
pp. 1950024 ◽  
Author(s):  
Fatma Meydaneri Tezel ◽  
İ. Afşin Kariper

In this study, zinc selenide (ZnSe) thin films were produced on glass substrate by using chemical bath deposition (CBD) method at 80[Formula: see text]C, from aqueous solutions of zinc sulphate and sodium selenosulphide, which were produced using solid selenium as the selenium source. The optical and structural properties of ZnSe thin films were investigated at room-temperature. The pH of the chemical bath, in which ZnSe thin films were immersed, were changed between pH:8–11. Optical properties of the films, including extinction coefficient, refractive index, reflectance, absorbance, transmittance, dielectric constants and optical density values were calculated using absorbance and transmittance measurements determined using a Hach Lange 500 spectrophotometer, in 300–1100 nm wavelength range. Optical bandgap values were obtained from transmittance and absorbance spectra ranged between 2.12 and 2.49 eV. According to XRD results, it was found that the films have polycrystalline structure and they exhibited different film thicknesses depending on phase and pH changes.


2014 ◽  
Vol 986-987 ◽  
pp. 47-50
Author(s):  
Jin Shang ◽  
Huan Ke ◽  
Shu Wang Duo ◽  
Ting Zhi Liu ◽  
Hao Zhang

ZnS thin films were deposited at three different radios of V(NH3·H2O)/V(N2H4) on glass substrates by chemical bath deposition (CBD) method without stirring the deposition bath during the deposition process. The structural and optical properties were analyzed by X-ray diffraction (XRD) and UV-VIS spectrophotometer. The results showed that ZnS thin film deposited at the radio of V(NH3·H2O)/V(N2H4)=15:15 is higher than that of the other two different solutions. With the radio of V(NH3·H2O)/V(N2H4) decreasing from 15:5 to 15:15, homogenous precipitation of Zn (OH)2easily forms in the bath, but ZnS precipitation first become suppressed and then easily forms in solution. It means that the concentration of OH-ion increases with the volume of N2H4increasing, which accelerates the formation of Zn (OH)2. However, when the volume of N2H4increases to 15mL, relatively high concentration of OH-ion not only accelerates the formation of Zn (OH)2, but also be used to the hydrolysis of thiourea. The average transmissions of all the ZnS films from three different solutions (V(NH3·H2O)/V(N2H4)=15:5, 15:10 and 15:15) are greater than 90% for wavelength values in visible region. The direct band gaps range from 3.80 to 4.0eV. The ZnS film deposited for 2.5h with the radio of V(NH3·H2O)/V(N2H4)=15:15 has the cubic structure only after single deposition.


2018 ◽  
Vol 30 (12) ◽  
pp. 2631-2637 ◽  
Author(s):  
P. Gautham ◽  
U. Sachin Varma ◽  
K.M. Sreekanth ◽  
D.V. Ravi Kumar ◽  
K.M. Sreedhar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document