BINORMAL SCHRODINGER SYSTEM OF WAVE PROPAGATION FIELD OF LIGHT RADIATE IN THE NORMAL DIRECTION WITH q-HATM APPROACH

Optik ◽  
2021 ◽  
pp. 166444
Author(s):  
Talat Körpinar ◽  
Zeliha Körpinar ◽  
Ridvan Cem Demlrkol
Author(s):  
Talat Korpinar ◽  
Ridvan Cem Demirkol ◽  
Zeliha Korpinar

In this paper, we first study the applications of the wave propagation flow in the normal direction, which is assumed to be the path of the propagated light radiated by Heisenberg ferromagnetic equation. Then the Coriolis phase is mainly used to demonstrate the relationship between the geometric magnetic phase and parallel transportation of the wave propagation field of the evolving light radiating in the normal orientation with Heisenberg ferromagnetic equation. Moreover, we investigate the geometric magnetic interpretation of the binormal evolution of the wave propagation field in the normal direction by considering the nonlinear fractional system with the repulsive type. Finally, we obtain numerical fractional solutions for the nonlinear fractional systems with the repulsive type by using the [Formula: see text]-Homotopy analysis transform ([Formula: see text]-HATM) method.


Author(s):  
T. Korpinar ◽  
R. Cem Demirkol ◽  
Z. Korpinar

In this paper, we study applications of fractional Heisenberg antiferromagnetic model associated with the magnetic [Formula: see text]-lines in the normal direction. Evolution equations of magnetic [Formula: see text]-lines due to inextensible Heisenberg antiferromagnetic flow are computed to construct the soliton surface associated with the inextensible Heisenberg antiferromagnetic flow. Then, their explicit solutions are examined in terms of magnetic and geometric quantities via the conformable fractional derivative method. Finally, we obtain new numerical fractional solutions for nonlinear fractional Schrödinger system with the inextensible Heisenberg antiferromagnetic flow model.


2019 ◽  
Vol 9 (23) ◽  
pp. 4984 ◽  
Author(s):  
Chang ◽  
Jin ◽  
Jeong ◽  
Kim ◽  
Do

Shoreline processes observed by a video monitoring system were investigated under different wave conditions. A 30 m-high tower equipped with video cameras was constructed in Hujeong Beach, South Korea, where coastal erosion was suspected to occur. Two-year shoreline data since December 2016 showed that beach area, Ab, has decreased, but periods of rapid increase in Ab were also observed. Shoreline change was closely related to the wave propagation directions and bottom topography. Ab increased when waves approached the shore obliquely, whereas it decreased when they approached in a normal direction. The shoreline became undulated when Ab increased, while it became flatter when Ab decreased. The undulation process was influenced by nearshore bedforms because the shoreline protruded in the lee area where underwater rocks or nearshore sandbars actively developed, with a sheltering effect on waves. Specifically, the locations of shoreline accretion corresponded to the locations where the sandbar horns (location where a crescentic sandbar protrudes toward the shore) developed, confirming the out-of-phase coupling between sandbars and shoreline. When waves with higher energy approached normal to the shore, the sheltering effect of sandbars and underwater rocks became weaker and offshore sediment transport occurred uniformly along the coast, resulting in flatter shorelines.


Author(s):  
J. M. Galbraith ◽  
L. E. Murr ◽  
A. L. Stevens

Uniaxial compression tests and hydrostatic tests at pressures up to 27 kbars have been performed to determine operating slip systems in single crystal and polycrystal1ine beryllium. A recent study has been made of wave propagation in single crystal beryllium by shock loading to selectively activate various slip systems, and this has been followed by a study of wave propagation and spallation in textured, polycrystal1ine beryllium. An alteration in the X-ray diffraction pattern has been noted after shock loading, but this alteration has not yet been correlated with any structural change occurring during shock loading of polycrystal1ine beryllium.This study is being conducted in an effort to characterize the effects of shock loading on textured, polycrystal1ine beryllium. Samples were fabricated from a billet of Kawecki-Berylco hot pressed HP-10 beryllium.


Author(s):  
M. Pan ◽  
J.M. Cowley

Electron microdiffraction patterns, obtained when a small electron probe with diameter of 10-15 Å is directed to run parallel to and outside a flat crystal surface, are sensitive to the surface nature of the crystals. Dynamical diffraction calculations have shown that most of the experimental observations for a flat (100) face of a MgO crystal, such as the streaking of the central spot in the surface normal direction and (100)-type forbidden reflections etc., could be explained satisfactorily by assuming a modified image potential field outside the crystal surface. However the origin of this extended surface potential remains uncertain. A theoretical analysis by Howie et al suggests that the surface image potential should have a form different from above-mentioned image potential and also be smaller by several orders of magnitude. Nevertheless the surface potential distribution may in practice be modified in various ways, such as by the adsorption of a monolayer of gas molecules.


Sign in / Sign up

Export Citation Format

Share Document