scholarly journals Effects of channel dimension, heat flux, and mass flux on flow boiling regimes in microchannels

2009 ◽  
Vol 35 (4) ◽  
pp. 349-362 ◽  
Author(s):  
Tannaz Harirchian ◽  
Suresh V. Garimella
Author(s):  
Anand P. Roday ◽  
Michael K. Jensen

The critical heat flux (CHF) condition sets an upper limit on the flow-boiling heat transfer process. With the growing demand for the use of two-phase flow in micro and nano-sized devices, there is a strong need to understand the CHF phenomenon in channels of such small dimensions. This study experimentally investigates the critical heat flux condition during flow boiling in a single stainless steel microtube of two different diameters—0.427mm, and 0.286 mm. Degassed water is the working fluid. The effects of various parameters—diameter, mass flux (350–1500 kg/m2s), inlet subcooling (2°C–50°C), and length-to-diameter ratio (75–200) on the CHF condition are studied for the exit condition being nearly atmospheric pressure. The CHF increases with an increase in mass flux. The effect of the inlet subcooling on the CHF condition is more complex. With a decreasing inlet subcooling, the CHF decreases until saturated liquid is reached; thereafter, the CHF increases with quality.


2013 ◽  
Vol 135 (2) ◽  
Author(s):  
YanFeng Fan ◽  
Ibrahim Hassan

Flow boiling heat transfer in a horizontal microtube with inlet restriction (orifice) under uniform heating condition is experimentally investigated using FC-72 as working fluid. A stainless steel microtube with an inner diameter of 889 μm is selected as main microtube. Two microtubes with smaller diameters are assembled at the inlet of main microtube to achieve the restriction ratios of 50% and 20%. The experimental measurement is carried out at mass fluxes ranging from 160 to 870 kg/m2·s, heat fluxes varying from 6 to 170 kW/m2, inlet temperatures of 23 and 35 °C, and saturation pressures of 10 and 45 kPa. The effects of the orifices on two-phase pressure drop, critical heat flux (CHF), and flow boiling heat transfer coefficient are studied. The results show that the pressure drop caused by the orifice takes a considerable portion in the total pressure drop at low mass fluxes. This ratio decreases as the vapor quality or mass flux increases. The difference of normal critical heat flux in the microtubes with different orifice sizes is negligible. In the aspect of flow boiling heat transfer, the orifice is able to enhance the heat transfer at low mass flux and high saturation pressure, which indicates the contribution of orifice in the nucleate boiling dominated regime. However, the effect of orifice on flow boiling heat transfer is negligible in the forced convective boiling dominated regime.


Author(s):  
Bao Truong ◽  
Lin-wen Hu ◽  
Jacopo Buongiorno ◽  
Thomas McKrell

Nanofluids are engineered colloidal dispersions of nano-sized particle in common base fluids. Previous pool boiling studies have shown that nanofluids can improve critical heat flux (CHF) up to 200% for pool boiling and up to 50% for subcooled flow boiling due to the boiling induced nanoparticle deposition on the heated surface. Motivated by the significant CHF enhancement of nanoparticle deposited surface, this study investigated experimentally the subcooled flow boiling heat transfer of pre-coated test sections in water. Using a separate coating loop, stainless steel test sections were treated via flow boiling of alumina nanofluids at constant heat flux and mass flow rate. The pre-coated test sections were then used in another loop to measure subcooled flow boiling heat transfer coefficient and CHF with water. The CHF values for the pre-coated tubing were found on average to be 28% higher than bare tubing at high mass flux G = 2500 kg/m2 s. However, no enhancement was found at lower mass flux G = 1500 kg/m2 s. The heat transfer coefficients did not differ much between experiments when the bare or coated tubes were used. SEM images of the test sections confirm the presence of a nanoparticle coating layer. The nanoparticle deposition is sporadic and no relationship between the coating pattern and the amount of CHF enhancement is observed.


Author(s):  
Qian You ◽  
Ibrahim Hassan ◽  
Lyes Kadem

The experiments are conducted to study the flow boiling instability in a single microtube with 0.889 mm hydraulic diameter in vertical upward and downward flow directions (VU and VD). The subcooled dielectric liquid FC-72 is driven at mass fluxes varying from 700 to 1400 kg/m2·s, and the heat flux uniformly applied on the microtube surface is up to 9.6 W/cm2. The onsets of flow oscillations (OFIs) in both flow directions are observed. Their oscillation types and characteristics are presented as well. The effects of mass flux and heat flux on flow instability in vertical flow directions are discussed. The results show that as the mass flux increases, the OFI occurrence is postponed, and the compounded oscillation types (Ledinegg, pressure drop and density wave oscillations) turn to pressure drop type dominant. At low mass fluxes, the OFI appears earlier in VD than in VU due to the buoyancy force impeded the bubble discharging. As the mass flux increases, the OFI appearance in VD is close to the ones in VU and its flow oscillations tend to be re-stabilized. After OFIs appeared at a given mass flux, with more heat flux added, the density wave oscillation type in VU becomes more active. However, at a constant mass flux, as the heat flux increases, the flow instability in VD becomes “stable” which may be due to the rapid flow pattern change, and this kind of “stable” is not expected because the local dryout may accompany. Hence, the microtube with vertical upward flow direction (VU) performs better from flow boiling instability point of view.


2015 ◽  
Vol 64 ◽  
pp. 13-22 ◽  
Author(s):  
Daxiang Deng ◽  
Ruxiang Chen ◽  
Hao He ◽  
Junyuan Feng ◽  
Yong Tang ◽  
...  

Author(s):  
Dolaana M. Khovalyg ◽  
Predrag S. Hrnjak ◽  
Aleksandr V. Baranenko ◽  
Anthony M. Jacobi

This work focuses on the study of flow boiling of R134a in 0.54 mm square parallel minichannels, with a particular focus on the transient pressure drop of individual channels and their interaction. The individual pressure drop in each passage was analyzed to establish the inter-channel relationship; additionally, the effect of heat and mass flux and the inlet vapor qualities on the flow patterns of each channel was studied based on flow visualization and pressure drop measurements. The mass flux and heat flux in the experiments were varied up to 800 kg/m2s and 10 kW/m2 respectively. The heat flux was controlled and varied independently in each channel. Results illustrate that interaction between channels exists, and the correlation degree depends on the flow boiling dynamics in each passage. The pressure drop oscillation in each channel affects the flow redistribution between channels. A channel subjected to the least heat flux tends to correlate the most with greater heated channels because of the mass flux fluctuations caused by boiling phenomena in other channels.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5972
Author(s):  
Yu Xu ◽  
Zihao Yan ◽  
Ling Li

To protect the environment, a new low-GWP refrigerant R1234ze(E) was created to substitute R134a. However, its flow boiling performances have not received sufficient attention so far, which hinders its popularization to some extent. In view of this, an experimental investigation was carried out in a 1.88 mm horizontal circular minichannel. The saturation pressures were maintained at 0.6 and 0.7 MPa, accompanied by mass flux within 540–870 kg/m2 s and heat flux within 25–65 kW/m2. For nucleate boiling, a larger heat flux brings about a larger heat transfer coefficient (HTC), while for convective boiling, the mass flux and vapor quality appear to take the lead role. The threshold vapor quality of different heat transfer mechanisms is around 0.4. Additionally, larger saturation pressure results in large HTC. As for the frictional pressure drop (FPD), it is positively influenced by mass flux and vapor quality, while negatively affected by saturation pressure, and the influence of heat flux is negligible. Furthermore, with the measured data, several existing correlations are compared. The results indicate that the correlations of Saitoh et al. (2007) and Müller-Steinhagen and Heck (1986) perform best on flow boiling HTC and FPD with mean absolute deviations of 5.4% and 10.9%.


Author(s):  
M. D. Hambarde ◽  
Ramakant Shrivastava ◽  
S.R. Thorat ◽  
O.P. Dale

Due to higher ozone layer depletion potential of HCFC refrigerant, R22 which has been mostly used in house hold refrigeration will be phased out by 2020 as per Montreal Protocol and UNFCCC Regulations. R407C, a zeotropic refrigerant from HFC category is a promising refrigerants in place of R22. Performance evaluation of R407 is required to enhance its application in house hold refrigeration. Hence an experimental investigation is carried out to understand the heat transfer characteristics during flow boiling of R407C in a smooth horizontal tube of 13.386 mm inner diameter and 2m length. The experiment is performed under the operating conditions; (i) mass flux range 100 to 300 kg s-1m-2; (ii) heat flux within range 2 to 7 kWm-2; (iii) temperature range at inlet to test section -100C to +100C; (iv) average vapor quality within test section from 0.05 to 0.95.The effect of heat flux, mass flux, vapor quality, temperature glide on heat transfer coefficient, during evaporation of R407C are examined.


Author(s):  
K. S. Park ◽  
W. H. Choo ◽  
K. H. Bang

The flow boiling heat transfer coefficient of R-22 in small hydraulic diameter tubes has been experimentally studied. Both brass and aluminum round tubes of 1.66 mm inside diameter are used for the test section. The ranges of the major experimental parameters are 300∼600 kg/m2s of refrigerant mass flux, 10∼20 kW/m2 of the wall heat flux, 0.0∼0.9 of the inlet vapor quality. The experimental result showed that the flow boiling heat transfer coefficient in this small tubes are in the range of 2∼4 kW/m2K and it varies only by heat flux, independent of mass flux and vapor quality. It is also observed that the heat transfer coefficients in the aluminum tube are up to 50% higher than in the brass tube.


Sign in / Sign up

Export Citation Format

Share Document