An integral case of the axisymmetric shape equation of open vesicles with free edges

2018 ◽  
Vol 106 ◽  
pp. 25-28 ◽  
Author(s):  
Xiaohua Zhou
2018 ◽  
Vol 27 (3) ◽  
pp. 038704 ◽  
Author(s):  
Yi-Heng Zhang ◽  
Zachary McDargh ◽  
Zhan-Chun Tu

2019 ◽  
Vol 35 (5) ◽  
pp. 491-497
Author(s):  
Kun Wang ◽  
Wenhao Li ◽  
Zhanshan Wang
Keyword(s):  
Hot Wire ◽  

Author(s):  
Tushar K. Talukdar ◽  
Liang Wang ◽  
Sergio D. Felicelli

Solidification cracking represents a significant scientific and technical challenge in the rapid fabrication of bimetallic parts involving Cu and H13 tool steel. The main cause of the cracking formation is attributed to the residual stress accumulation, which depends on the thermal history and phase transformation during the deposition. In this research, a thermomechanical three-dimensional finite element model is developed to determine the temperature history and residual stress in Cu-H13 samples deposited by the Laser Engineered Net Shaping (LENS) process. The development of the model was carried out using the SYSWELD software package. The metallurgical transformations are taken into account using the temperature dependent material properties and the continuous cooling transformation diagram. Two different scanning strategies — alternative and unidirectional — are studied. The same model is also applied to a H13-H13 sample to compare the results. The input laser power is optimized for each layer and three different scanning speeds to maintain a steady molten pool size. It is observed that for a constant scanning speed the required laser power decreases with addition of more layers, and with the increase of scanning speed the laser power needs to be increased. The residual stress is found to be compressive near the center of the deposited wall and tensile at the free edges, which is consistent with the published experimental results in the literature. Similar stress distributions are obtained for both scanning strategies with higher stress concentration at the free edges of the interface between the substrate and the first layer. In these regions, the use of H13 substrate results in a higher stress accumulation than the Cu substrate.


2021 ◽  
Author(s):  
Luigi Tagliavini ◽  
Andrea Botta ◽  
Luca Carbonari ◽  
Giuseppe Quaglia ◽  
Dario Gandini ◽  
...  

Abstract In this paper, a novel mobile platform for assistive robotics tasks is presented. The machine is designed for working in a home environment, un-structured and possibly occupied by people. To work in this space, the platform must be able to get rid of all the consequent difficulties: to overpass small objects as steps and carpets, to operate with an as-high-as-possible dynamics, to avoid moving obstacles, and to navigate autonomously to track persons for person monitoring purposes. The proposed platform is designed to have an omni-directional mobility that improves the manoeuvrability with respect to state-of-the-art differential drive robots. It also will have a non-axisymmetric shape to easily navigate narrow spaces, and real-time edge computing algorithms for navigation. This work shows the design paradigm adopted for the realization of a novel mobile robot, named Paquitop. For a robust output, the design process used a modular approach which disjointed the several sub-systems which compose the machine. After a brief analysis of the expected features, a set of basic requirements are drawn to guide the functional and executive design. The overall architecture of the platform is presented, together with some details on the mechanical and electrical systems.


2012 ◽  
Vol 468-471 ◽  
pp. 2248-2254
Author(s):  
Qiang Li ◽  
Wan Kui Bu ◽  
Hui Xu ◽  
Xiao Bo Song

The numerical model of top coal drawing in gently inclined seam is built based on PFC2d software. By comparing with the theory of drawn-body movement law, it can be obtained that the shape of top coal drawn-body accords with the theory of random medium movement. The research results show that the form of the shape equation of top coal drawn-body is uniform while the top coal caving angle is different. On the other hand, with the difference of top coal caving angle and drawing height, the shape of top coal drawn-body is differential at the meso scale, which depends on the parameters of the shape equation of top coal drawn-body.


1999 ◽  
Vol 13 (16) ◽  
pp. 547-553
Author(s):  
SHAOGUANG ZHANG ◽  
ZHONGCAN OUYANG ◽  
JIXING LIU

So far, two methods are often used in solving the equilibrium shapes of vesicles. One method is by starting with the general shape equation and restricting it to the shapes with particular symmetry. The other method is by assuming the symmetry and topology of the vesicle first and treating it with the calculus of variation to get a set of ordinary differential equations. The relationship between these two methods in the case of cylindrical vesicles, and a comparison of the results are given.


2017 ◽  
Vol 175 ◽  
pp. 219-234 ◽  
Author(s):  
Alex Møberg ◽  
Michal K. Budzik ◽  
Henrik M. Jensen

Sign in / Sign up

Export Citation Format

Share Document