Intra-oral bone grafting of alveolar defects using autogenous scraped bone and in vivo bone regeneration techniques

2011 ◽  
Vol 40 (10) ◽  
pp. 1056
Author(s):  
R. Bhandari ◽  
G. Pollock ◽  
N. Ali
2021 ◽  
Author(s):  
Mohammad Kamal ◽  
Sara Al-Obaidly ◽  
Bernd Lethaus ◽  
Alexander K. Bartella

Abstract Background: Bone grafting is commonly used for reconstructing skeletal defects in the craniofacial region. Several bone augmentation models were developed to optimize bone regeneration in both vertical and horizontal dimesions. Aim: The aim of this study was to develop a surgical animal model for establishing a three-dimensional (3D) grafting environment in the animal's mandibular ramus for horizontal and vertical bone regeneration using osseous shell technique, as in human patients. Materials and methods: Initial osteological and imaging survey were performed on a postmortem skull of a New Zealand White (NZW) rabbit skull, Oryctolagus cuniculus, for feasibility assessment for performing the surgical procedure. 3D osseus defect was created in the mandibular ramus through a submandibular incision and the osseous shell plates were stabilized with osteosynthesis fixation screws and defect filled with particular bone grafting material. The in-vivo surgical procedures were conducted in four 8-week-old NZW rabbits utilising two osseous shell materials: xenogenic human cortical plates, and autogenous rabbit cortical plates, and the created 3D defects were filled using xenograft and allograft bone grafting materials. The healed defects were evaluated for bone regeneration after 12 weeks using histological and Cone Beam Computed Tomography (CBCT) imaging analysis. Results: Clinical analysis at 12 weeks after surgery revealed the stability of the 3D grafted bone augmentation defects using the osseous shell technique. Imaging and histological analyses confirmed the effectiveness of this model in assessing bone regeneration. Conclusion: The rabbit model is an efficient and reliable biological method for creating a seizable three-dimensional horizontal and vertical bone regeneration model in the mandibular ramus using osseous shell technique for testing various bone-substitute materials testing without compromising the health of the animal. The filled defects could be analyzed for osteogenesis, quantification of bone formation, and healing potential, using histomorphometric analysis, in addition to 3D morphologic evaluation using radiation imaging.


2020 ◽  
Vol 48 (3) ◽  
pp. 755-764
Author(s):  
Benjamin B. Rothrauff ◽  
Rocky S. Tuan

Bone possesses an intrinsic regenerative capacity, which can be compromised by aging, disease, trauma, and iatrogenesis (e.g. tumor resection, pharmacological). At present, autografts and allografts are the principal biological treatments available to replace large bone segments, but both entail several limitations that reduce wider use and consistent success. The use of decellularized extracellular matrices (ECM), often derived from xenogeneic sources, has been shown to favorably influence the immune response to injury and promote site-appropriate tissue regeneration. Decellularized bone ECM (dbECM), utilized in several forms — whole organ, particles, hydrogels — has shown promise in both in vitro and in vivo animal studies to promote osteogenic differentiation of stem/progenitor cells and enhance bone regeneration. However, dbECM has yet to be investigated in clinical studies, which are needed to determine the relative efficacy of this emerging biomaterial as compared with established treatments. This mini-review highlights the recent exploration of dbECM as a biomaterial for skeletal tissue engineering and considers modifications on its future use to more consistently promote bone regeneration.


2019 ◽  
Author(s):  
Hyun Joo Kim ◽  
Su Jung You ◽  
Dae Hyeok Yang ◽  
Heung Jae Chun ◽  
Hae Kwan Park ◽  
...  

Author(s):  
João Augusto Oshiro‐Junior ◽  
Rafaela Moreno Barros ◽  
Camila Garcia da Silva ◽  
Caroline Cordeiro de Souza ◽  
Cássio Rocha Scardueli ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Lu Wang ◽  
Shuwei Liu ◽  
Chunxia Ren ◽  
Siyuan Xiang ◽  
Daowei Li ◽  
...  

AbstractNanomaterial-based drug sustainable release systems have been tentatively applied to bone regeneration. They, however, still face disadvantages of high toxicity, low biocompatibility, and low drug-load capacity. In view of the low toxicity and high biocompatibility of polymer nanomaterials and the excellent load capacity of hollow nanomaterials with high specific surface area, we evaluated the hollow polydopamine nanoparticles (HPDA NPs), in order to find an optimal system to effectively deliver the osteogenic drugs to improve treatment of bone defect. Data demonstrated that the HPDA NPs synthesized herein could efficiently load four types of osteogenic drugs and the drugs can effectively release from the HPDA NPs for a relatively longer time in vitro and in vivo with low toxicity and high biocompatibility. Results of qRT-PCR, ALP, and alizarin red S staining showed that drugs released from the HPDA NPs could promote osteogenic differentiation and proliferation of rat bone marrow mesenchymal stem cells (rBMSCs) in vitro. Image data from micro-CT and H&E staining showed that all four osteogenic drugs released from the HPDA NPs effectively promoted bone regeneration in the defect of tooth extraction fossa in vivo, especially tacrolimus. These results suggest that the HPDA NPs, the biodegradable hollow polymer nanoparticles with high drug load rate and sustainable release ability, have good prospect to treat the bone defect in future clinical practice.


2021 ◽  
Vol 12 ◽  
pp. 204173142110042
Author(s):  
Rao Fu ◽  
Chuanqi Liu ◽  
Yuxin Yan ◽  
Qingfeng Li ◽  
Ru-Lin Huang

Traditional bone tissue engineering (BTE) strategies induce direct bone-like matrix formation by mimicking the embryological process of intramembranous ossification. However, the clinical translation of these clinical strategies for bone repair is hampered by limited vascularization and poor bone regeneration after implantation in vivo. An alternative strategy for overcoming these drawbacks is engineering cartilaginous constructs by recapitulating the embryonic processes of endochondral ossification (ECO); these constructs have shown a unique ability to survive under hypoxic conditions as well as induce neovascularization and ossification. Such developmentally engineered constructs can act as transient biomimetic templates to facilitate bone regeneration in critical-sized defects. This review introduces the concept and mechanism of developmental BTE, explores the routes of endochondral bone graft engineering, highlights the current state of the art in large bone defect reconstruction via ECO-based strategies, and offers perspectives on the challenges and future directions of translating current knowledge from the bench to the bedside.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3207
Author(s):  
Kumaresan Sakthiabirami ◽  
Vaiyapuri Soundharrajan ◽  
Jin-Ho Kang ◽  
Yunzhi Peter Yang ◽  
Sang-Won Park

The design of zirconia-based scaffolds using conventional techniques for bone-regeneration applications has been studied extensively. Similar to dental applications, the use of three-dimensional (3D) zirconia-based ceramics for bone tissue engineering (BTE) has recently attracted considerable attention because of their high mechanical strength and biocompatibility. However, techniques to fabricate zirconia-based scaffolds for bone regeneration are in a stage of infancy. Hence, the biological activities of zirconia-based ceramics for bone-regeneration applications have not been fully investigated, in contrast to the well-established calcium phosphate-based ceramics for bone-regeneration applications. This paper outlines recent research developments and challenges concerning numerous three-dimensional (3D) zirconia-based scaffolds and reviews the associated fundamental fabrication techniques, key 3D fabrication developments and practical encounters to identify the optimal 3D fabrication technique for obtaining 3D zirconia-based scaffolds suitable for real-world applications. This review mainly summarized the articles that focused on in vitro and in vivo studies along with the fundamental mechanical characterizations on the 3D zirconia-based scaffolds.


Sign in / Sign up

Export Citation Format

Share Document