Generation of possible multiple components disassembly sequence for maintenance using a disassembly constraint graph

2006 ◽  
Vol 102 (1) ◽  
pp. 51-65 ◽  
Author(s):  
Jing Rong Li ◽  
Li Pheng Khoo ◽  
Shu Beng Tor
2002 ◽  
Vol 2 (1) ◽  
pp. 28-37 ◽  
Author(s):  
J. R. Li , ◽  
S. B. Tor , and ◽  
L. P. Khoo

This paper describes a hybrid approach to handle disassembly sequence planning for maintenance. The product under maintenance is first modeled using a novel hybrid graph known as Disassembly Constraint Graph (DCG) which embodies complete disassembly information and can be used to prune the search space of disassembly sequences. Subsequently, a novel Tabu-enhanced GA engine is invoked to generate the near optimal disassembly sequences. A case study was used to illustrate the effectiveness of the proposed approach. The details of the DCG, the TS-enhanced GA engine and the fitness function used are presented in this paper.


2000 ◽  
Vol 122 (2) ◽  
pp. 179-184 ◽  
Author(s):  
Hari Srinivasan ◽  
Rajit Gadh

This paper analyzes the problem of disassembling multiple selected components from an assembly, defined as selective disassembly, and presents algorithms for efficient disassembly analysis of geometric models. Applications for selective disassembly include assembling, maintenance and recycling. A new approach called ‘Disassembly Wave Propagation’ is proposed to determine a selective disassembly sequence with minimal component removals from an assembly. This approach defines: (i) disassembly waves to topologically arrange the components denoting the disassembly order and (ii) intersection events between the waves to determine the selective disassembly sequences. In order to evaluate a minimal removal sequence in a feasible computation time, algorithms are proposed that prioritize and process the intersection events based on the order in which they occurred. The proposed algorithms analyze selective disassembly from the geometric perspective and are applicable for both two-dimensional and three-dimensional product assemblies. [S1050-0472(00)01402-1]


2018 ◽  
Vol 41 ◽  
Author(s):  
Wei Ji Ma

AbstractGiven the many types of suboptimality in perception, I ask how one should test for multiple forms of suboptimality at the same time – or, more generally, how one should compare process models that can differ in any or all of the multiple components. In analogy to factorial experimental design, I advocate for factorial model comparison.


2002 ◽  
Vol 231 ◽  
pp. 309-314 ◽  
Author(s):  
CH Peterson ◽  
LL McDonald ◽  
RH Green ◽  
WP Erickson

2009 ◽  
Vol 5 (2) ◽  
pp. 53
Author(s):  
Philip B Adamson ◽  

There is increasing appreciation of the prevalence of sleep-disordered breathing (SDP) in heart failure. As we examine this patient population, the difficulties of determining success in the treatment of SDB are becoming evident. The apnoea–hypopnoea index (AHI) is the standard method of measuring both the severity of the disease and treatment success, but in itself is a composite of multiple components. This article examines both current and developing measurements in the treatment of SDB.


Author(s):  
Paul F. M. J. Verschure

This chapter introduces the “Capabilities” section of the Handbook of Living Machines. Where the previous section considered building blocks, we recognize that components or modules do not automatically make systems. Hence, in the remainder of this handbook, the emphasis is toward the capabilities of living systems and their emulation in artifacts. Capabilities often arise from the integration of multiple components and thus sensitize us to the need to develop a system-level perspective on living machines. Here we summarize and consider the 14 contributions in this section which cover perception, action, cognition, communication, and emotion, and the integration of these through cognitive architectures into systems that can emulate the full gamut of integrated behaviors seen in animals including, potentially, our own capacity for consciousness.


GeroScience ◽  
2021 ◽  
Author(s):  
Yoko O. Henderson ◽  
Nazmin Bithi ◽  
Christopher Link ◽  
Jie Yang ◽  
Rebecca Schugar ◽  
...  

AbstractGlobal average life expectancy continues to rise. As aging increases the likelihood of frailty, which encompasses metabolic, musculoskeletal, and cognitive deficits, there is a need for effective anti-aging treatments. It is well established in model organisms that dietary restriction (DR), such as caloric restriction or protein restriction, enhances health and lifespan. However, DR is not widely implemented in the clinic due to patient compliance and its lack of mechanistic underpinnings. Thus, the present study tested the effects of a somewhat more clinically applicable and adoptable DR regimen, every-other-day (EOD) intermittent fasting, on frailty in 20-month-old male and female C57BL/6 mice. Frailty was determined by a series of metabolic, musculoskeletal, and cognitive tasks performed prior to and toward the end of the 2.5-month dietary intervention. Late-life EOD fasting attenuated overall energy intake, hypothalamic inflammatory gene expression, and frailty in males. However, it failed to reduce overall caloric intake and had a little positive effect in females. Given that the selected benefits of DR are dependent on augmented production of the gasotransmitter hydrogen sulfide (H2S) and that renal H2S production declines with age, we tested the effects of EOD fasting on renal H2S production capacity and its connection to frailty in males. EOD fasting boosted renal H2S production, which positively correlated with improvements in multiple components of frailty tasks. Therefore, late-life initiated EOD fasting is sufficient to reduce aging-related frailty, at least in males, and suggests that renal H2S production capacity may modulate the effects of late-life EOD fasting on frailty.


2021 ◽  
Vol 1 ◽  
pp. 131-140
Author(s):  
Federica Cappelletti ◽  
Marta Rossi ◽  
Michele Germani ◽  
Mohammad Shadman Hanif

AbstractDe-manufacturing and re-manufacturing are fundamental technical solutions to efficiently recover value from post-use products. Disassembly in one of the most complex activities in de-manufacturing because i) the more manual it is the higher is its cost, ii) disassembly times are variable due to uncertainty of conditions of products reaching their EoL, and iii) because it is necessary to know which components to disassemble to balance the cost of disassembly. The paper proposes a methodology that finds ways of applications: it can be applied at the design stage to detect space for product design improvements, and it also represents a baseline from organizations approaching de-manufacturing for the first time. The methodology consists of four main steps, in which firstly targets components are identified, according to their environmental impact; secondly their disassembly sequence is qualitatively evaluated, and successively it is quantitatively determined via disassembly times, predicting also the status of the component at their End of Life. The aim of the methodology is reached at the fourth phase when alternative, eco-friendlier End of Life strategies are proposed, verified, and chosen.


Sign in / Sign up

Export Citation Format

Share Document