Influence of polymer addition on the amorphization, dissolution and physical stability of co-amorphous systems

2020 ◽  
Vol 588 ◽  
pp. 119768
Author(s):  
Jingwen Liu ◽  
Holger Grohganz ◽  
Thomas Rades
Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1725
Author(s):  
Jiawei Han ◽  
Luyuan Li ◽  
Meiling Su ◽  
Weili Heng ◽  
Yuanfeng Wei ◽  
...  

Different from previously reported co-amorphous systems, a co-amorphous curcumin-magnolol (CUR-MAG CM) system, as compared with its crystalline counterparts, exhibited decreased dissolution due to its aggregation during dissolution. The main purpose of the present study is to deaggregate CUR-MAG CM to optimize drug dissolution and explore the deaggregation mechanism involved. Herein, a small amount of polymer (HPMC, HPC, and PVP K30) was co-formulated at 5% (w/w) with CUR-MAG CM as ternary co-amorphous systems. The polymer addition changed the surface properties of CUR-MAG CM including improved water wettability enhanced surface free energy, and hence exerted a deaggregating effect. As a result, the ternary co-amorphous systems showed faster and higher dissolution as compared with crystalline CUR/MAG and CUR-MAG CM. In addition, the nucleation and crystal growth of dissolved CUR and MAG molecules were significantly inhibited by the added polymer, maintaining a supersaturated concentration for a long time. Furthermore, polymer addition increased the Tg of CUR-MAG CM, potentially involving molecular interactions and inhibiting molecular mobility, resulting in enhanced physical stability under 25 °C/60% RH and 40 °C/75% RH conditions. Therefore, this study provides a promising strategy to optimize the dissolution and physical stability of co-amorphous systems by deaggregation and crystallization inhibition via adding small amounts of polymers.


2019 ◽  
Vol 16 (3) ◽  
pp. 1294-1304 ◽  
Author(s):  
Wenqi Wu ◽  
Yixuan Wang ◽  
Korbinian Löbmann ◽  
Holger Grohganz ◽  
Thomas Rades

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 801
Author(s):  
Rong Di ◽  
Jingwen Liu ◽  
Holger Grohganz ◽  
Thomas Rades

Converting crystalline compounds into co-amorphous systems is an effective way to improve the solubility of poorly water-soluble drugs. It is, however, of critical importance for the physical stability of co-amorphous systems to find the optimal mixing ratio of the drug with the co-former. In this study, a novel approach for this challenge is presented, exemplified with the co-amorphous system carvedilol–tryptophan (CAR–TRP). Following X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) of the ball-milled samples to confirm their amorphous form, Fourier-transform infrared spectroscopy (FTIR) and principal component analysis (PCA) were applied to investigate intermolecular interactions. A clear deviation from a purely additive spectrum of CAR and TRP was visualized in the PCA score plot, with a maximum at around 30% drug (mol/mol). This deviation was attributed to hydrogen bonds of CAR with TRP ether groups. The sample containing 30% drug (mol/mol) was also the most stable sample during a stability test. Using the combination of FTIR with PCA is an effective approach to investigate the optimal mixing ratio of non-strong interacting co-amorphous systems.


2020 ◽  
Vol 147 ◽  
pp. 105294 ◽  
Author(s):  
Mengwei Wang ◽  
Shiyuan Liu ◽  
Lina Jia ◽  
Jiaxing Zhang ◽  
Shichao Du ◽  
...  

Pharmaceutics ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 628 ◽  
Author(s):  
Eric Ofosu Kissi ◽  
Keyoomars Khorami ◽  
Thomas Rades

Co-amorphous drug–drug systems have been developed with the overall aim of improving the physical stability of two or more amorphous drugs. Co-amorphous systems often show good physical stability, and higher solubility and dissolution rates compared to their crystalline counterparts. The aim of this study is to determine if eutectic mixtures of two drugs can form stable co-amorphous systems. Three drug–drug mixtures, indomethacin–naproxen (IND−NAP), nifedipine–paracetamol (NIF−PAR), and paracetamol–celecoxib (PAR−CCX), were investigated for their eutectic and co-amorphization behavior as well as their physical stability in the co-amorphous form. The phase diagrams of the crystalline mixtures and the thermal behavior of the co-amorphous systems were analyzed by differential scanning calorimetry. The solid-state form and physical stability of the co-amorphous systems were analyzed using X-ray powder diffractometry during storage at room temperature at dry conditions. Initial eutectic screening using nifedipine (NIF), paracetamol (PAR), and celecoxib (CCX) indicated that IND−NAP, NIF−PAR, and PAR−CCX can form eutectic mixtures. Phase diagrams were then constructed using theoretical and experimental values. These systems, at different drug-to-drug ratios, were melted and cooled to form binary mixtures. Most mixtures were found to be co-amorphous systems, as they were amorphous and exhibited a single glass transition temperature. The stability study of the co-amorphous systems indicated differences in their physical stability. Comparing the phase diagrams with the physical stability of the co-amorphous mixtures, it was evident that the respective drug–drug ratio that forms the eutectic point also forms the most stable co-amorphous system. The eutectic behavior of drug–drug systems can thus be used to predict drug ratios that form the most stable co-amorphous systems.


RSC Advances ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 3946-3955 ◽  
Author(s):  
Man Zhang ◽  
Xinnuo Xiong ◽  
Zili Suo ◽  
Quan Hou ◽  
Na Gan ◽  
...  

The study of co-amorphous systems presented a safe and effective formulation technology for the development of new palbociclib solid forms with great dissolution rates, good physical stability, and high bioavailability.


Author(s):  
Noorma Rosita ◽  
Dewi Haryadi ◽  
Tristiana Erawati ◽  
Rossa Nanda ◽  
Widji Soeratri

The aim of this study was to investigate the ability of NLC in increasing photostability of tomato extract in term of antioxidant activity. Photostability testing on antioxidant activity of samples were conducted by accelerating method using UVB radiation 32.400 joule for 21 hours radiation. Antioxidant activity was measured by DPPH method. NLC was made by High Shear Homogenization (HPH) method at 24000 rpm for 4 cycles, while conventional creame was made by low speed at 400 rpm. The product were characterized include: pH, viscosity, and particle size. There were had difference characters and physical stability. NLC had smaller size, more homogenous and more stable than conventional creame. It was known that stability of antioxidant activity of tomato extract in NLC system higher than in conventional creame. That was showed with k value, as constanta of rate scavenging activity decreasing in antioxidant power between time (Sigma 2-tail less than 0.005) of NLC and conventional creame were: 2.03x10-2 %/hour ±0.08 (3.94) and 4.71x 10-2 %/ hour ±0.23 (4.88) respectively.


Author(s):  
Kathpalia Harsha ◽  
Das Sukanya

Ion Exchange Resins (IER) are insoluble polymers having styrene divinylbenzene copolymer backbone that contain acidic or basic functional groups and have the ability to exchange counter ions with the surrounding aqueous solutions. From the past many years they have been widely used for purification and softening of water and in chromatographic columns, however recently their use in pharmaceutical industry has gained considerable importance. Due to the physical stability and inert nature of the resins, they can be used as a versatile vehicle to design several modified release dosage forms The ionizable drug is complexed with the resin owing to the property of ion exchange. This resin complex dissociatesin vivo to release the drug. Based on the dissociation strength of the drug from the drug resin complex, various release patterns can be achieved. Many formulation glitches can be circumvented using ion exchange resins such as bitter taste and deliquescence. These resins also aid in enhancing disintegrationand stability of formulation. This review focuses on different types of ion exchange resins, their preparation methods, chemistry, properties, incompatibilities and their application in various oral drug delivery systems as well as highlighting their use as therapeutic agents.


Sign in / Sign up

Export Citation Format

Share Document