Proposal of reference stress for a surface flaw on a cylindrical component from a review-with-comparison of the local metal loss assessment rule between API 579-1 and the p-M diagram method

2011 ◽  
Vol 88 (11-12) ◽  
pp. 507-517 ◽  
Author(s):  
Kenji Oyamada ◽  
Shinji Konosu ◽  
Takashi Ohno
Author(s):  
Kenji Oyamada ◽  
Shinji Konosu ◽  
Takashi Ohno

Remaining Strength Factor (RSF) approach in Part 5 of API 579-1/ASME FFS-1 is an assessment method for a cylindrical component with a local metal loss based on surface correction factors. Also, reference stress solutions that are applied in the Failure Assessment Diagram (FAD) method for a cylindrical component with a crack-like flaw are provided in Annex D using surface correction factors. In the p-M diagram method that has been recently developed, reference stress solution for local metal loss evaluation in a cylindrical component is derived using bulging factors, which are similar but not identical to the surface correction factors used in API 579-1/ASME FFS-1. This paper describes the results of a comparative study among the RSF approach, reference stress solutions for the FAD method, and the p-M diagram method, in terms of plastic collapse evaluation of a cylindrical component. These results were compared with the FEA and experimental results to confirm how those estimated stresses could be validated. The results of the study also contain proposals for prospective modifications of API 579-1/ASME FFS-1.


Author(s):  
Kenji Oyamada ◽  
Shinji Konosu ◽  
Hikaru Miyata ◽  
Takashi Ohno

There are several Fitness-For-Service (FFS) standards with evaluation rules in terms of plastic collapse for a pressure vessel or piping component possessing a local metal loss area simultaneously subjected to internal pressure and bending moment. The authors have already reported the results of a comparative study of FFS rules, including the remaining strength factor (RSF) approach in Part 5 of API 579-1/ASME FFS-1 and the p-M diagram method, which pointed out that there could be significant differences in allowable flaw sizes. This paper describes an additional comparative study on the difference of allowable flaw size for local metal loss assessment between the RSF approach in Part 5 of API 579-1/ASME FFS-1 and the p-M diagram method, focusing on the effect of decreasing yield strength of the material at high temperatures, such as 350 degrees C. The allowable flaw depth at high temperatures derived from API579-1/ASME FFS-1 is larger than that derived by means of the p-M diagram method. However, it is verified by the finite element analysis that the allowable flaw size of the p-M diagram method is set on the stress state of general yielding near a local metal loss area if safety factor is not considered and it is possible to evade ratcheting due to cyclic bending moment in service, such as that caused by earthquake, etc.


Author(s):  
Yoichi Ishizaki ◽  
Greg Thorwald ◽  
Futoshi Yonekawa

Abstract This is Part 2 of two papers discussing the significance of two key factors of crack like flaw assessment in the Fitness for Service assessment. While FEM analysis technology has been advancing amazingly in recent years, and FEM based fitness-for-service assessment of a damaged components, such as crack like flaws and local metal loss assessment, has become mainstream in assessments, it is still important to understand the reference stress solution based on a limit load analysis and the role of each factor in the failure mode to control the damaged component safely until the end of its life. In API 579-1/ASME FFS-1[1], Part 9, Assessment of Crack like Flaws, those reference stress solutions were developed based on the limit load analysis using Folias factor Mt and surface correction factor Ms. Folias factor Mt and surface correction factor Ms, are factors that account for the bulging effect around flaws. Those factors enable prediction of a maximum allowable pressure of a damaged cylindrical shell from a simple flat plate model that contain same size of a damaged area. As for Folias factor, Mt, it is well known to express the relationship between the reference stress of a through-wall crack flat plate and a through-wall crack cylinder. The application of Mt is clearly defined in ASME/API 579 FFS-1 part 9C, as well as papers by Folias et al. The the significance of the surface correction factor for surface flaw, Ms, has not been commonly understood well enough in general. Unfortunately, API 579-1/ASME FFS-1 also does not clearly mention its significance and how Ms is to be applied in the stress analysis. At a glance, Ms looks like a similar factor to Mt, and it is tempting to simply apply Ms to primary membrane stress term like Mt, but that is not correct. Eventually, an incorrect application of Ms would lead to an incorrect discussion of a flaw characterization. Often, there is a question about ASME/API 579 FFS-1 Part 9C reference stress solutions, especially for ASME/API 579 FFS-1 eq. 9C.76, from the misunderstanding meaning of the Ms factor. Addressing this issue is important to maintain the integrity of the Fitness-For-Service technology. In this Part 2 of two papers, validation of equations obtained in Part 1 are discussed and proven based on FEM analysis.


Author(s):  
Yoichi Ishizaki ◽  
Greg Thorwald

Abstract This is Part 1 of two papers discussing the significance of two key factors of crack like flaw assessment in the Fitness for Service assessment. While FEM analysis technology has been advancing amazingly in recent years, and FEM based fitness-for-service assessment of damaged components, such as crack like flaws and local metal loss assessment, has become mainstream in assessments, it is still important to understand the reference stress solution and the role of each factor in the failure mode to operate the damaged component safely until the end of its life. In API 579-1/ASME FFS-1[1], Part 9, Assessment of Crack like Flaws, those reference stress solutions were developed based on the limit load analysis using Folias factor Mt and surface correction factor Ms. Folias factor Mt and surface correction factor Ms, are factors that account for the bulging effect around flaws. Those factors enable prediction of a maximum allowable pressure of a damaged cylindrical shell from a simple flat plate model that contain same size of defected area. As for Folias factor, Mt, it is well known to express the relationship between the reference stress of a through-wall crack flat plate and a through-wall crack cylinder. The application of Mt is clearly defined in ASME/API 579 FFS-1 part 9C [1], as well as papers by Folias et al. [2][3]. The significance of the surface correction factor for surface flaw, Ms, has not been commonly understood well enough in general. Unfortunately, API 579-1/ASME FFS-1[1] also does not clearly mention its significance and how Ms is to be applied in the stress analysis. Also the detailed discussion of the derivation process of each reference solution was rooted in several papers with different nomenclature and slightly different definition of factors, which can be very confusing. At a glance, surface correction factor, Ms, looks like a similar factor to Mt, and it is tempting to simply apply Ms to primary membrane stress term like Mt, but that is not correct. Eventually, an incorrect application of Ms would lead to an incorrect discussion of a flaw characterization. Often, there is a question about ASME/API 579 FFS-1[1] Part 9C reference stress solutions, especially for ASME/API 579 FFS-1[1] eq.9C.76, from the misunderstanding meaning of the Ms factor. Addressing this issue is important to maintain the understanding and integrity of the Fitness-For-Service technology. In this Part 1 of two papers, authors reviewed and reorganized step by step procedure of each reference stress solutions for flat plates and cylinders. Through this discussion, authors clarified the significance of Mt and Ms that are defined in ASME/API 579 FFS-1[1] Part 9C. In part 2, validation of equations obtained in this paper is discussed based on FEM analysis.


Author(s):  
Takuyo Kaida ◽  
Shinsuke Sakai

Concern about probabilistic approach for Fitness-For-Service (FFS) assessment has been growing over the last several years. The FFS assessment based on reliability helps to make a rational decision as to whether to run or repair the equipment. High Pressure Institute of Japan (HPI) formed a committee to develop a HPI FFS standard that can be used for pressure equipment with metal loss. This new standard provides an assessment procedure to evaluate structural integrity of components with metal loss based on reliability. This paper introduces the assessment procedure which is standardized and under preparation for publication, and the technical backgrounds. The standard provides information about limit state of pressure equipment, probabilistic properties of basic variables and target reliability. Probabilistic approach can be applied easily to metal loss assessment by using the standard.


Author(s):  
Pradeep Purnana ◽  
Shiyas Ibrahim

Pipelines are one of the safest forms of transportation for oil and gas. However, Pipelines may experience defects, such as corrosion, cracks during service period. Therefore, evaluation of these defects is very important in terms of assessment and for continued safe operation. Corrosion defects at the external surface of pipelines are often the result of fabrication faults, coating or cathodic protection issues, residual stress, cyclic loading, temperature or local environment (soil chemistry). In general, corrosion may occur in most pipes due to coating failure, and a pipe without any protective coating will experience external corrosion after some years. However, corrosion can occur on the internal surface of the pipeline due to contaminants in the products such as small sand particles. At present, there are different assessment methods for different types of defects in pipelines. The most popular codes for defect assessment in oil and gas pipelines are RSTRENG, Modified B31G, BS 7910 and API 579. Besides these codes and methods, there are numerical programs, such as CorLAS, which have been used successfully for assessing crack flaws in Pipelines. RSTRENG and B 31G methods are very simple when compared with API 579. API 579 is very complex method of assessing defects but very useful for remaining life assessment of Pipelines. In this paper corrosion defects like general metal loss, localized metal loss, pitting corrosion, other defects like dents, gouges, cracks, their remediation methods assessed based on API 579 method and our experience in Oil Pipelines. Since API 579 doesn’t cover cross country pipelines explicitly, we have made a research applying API 579 to ASME B31.4. Even though, we have done research on all types of defects (Level 1 and Level 2 assessment), in this paper we have covered only General metal loss assessment.


Author(s):  
Atsushi Ohno ◽  
Takayasu Tahara

Fitness-For-Service (FFS) assessments are performed to evaluate the components damaged in service to determine whether it is possible to continue their use. FFS assessment codes were recently standardized, and they are being used in many companies in Europe and the United States. In Japan, the regulation permits the use of FFS codes in nuclear power stations, but not yet in petroleum and petrochemical industries. The PAJ/JPCA FFS task group that consists of the members of petroleum or petrochemical companies has been studying and investigating one of the FFS Codes, API579-1/ASME FFS-1 [1], in an attempt to include it in the high pressure gas safety law [2], which regulates the pressure equipment operating at pressures greater than 1 MPa. We have now completed the adaptation of the FFS code for Japan, and it is in the process of being assessed by the authorities. It is required that the code is modified slightly because Japanese authorities and people are particularly nervous to matters regarding earthquake safety. This paper focuses on cylindrical equipment regulated by the high-pressure gas safety law. The margin for earthquake load of the actual equipment is shown, and the local metal loss assessment procedure according to API579-1/ASME FFS-1 is verified by using experimental burst test data with pressure and/or bending stress in order to determine whether or not the FFS code provides a sufficient safety margin for safe operations in Japan.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
Shinji Konosu ◽  
Hikaru Miyata

Assessment of overlapped internal and external volumetric flaws is one of the most common problems related to pressure vessel and piping components. Under the current fitness for service rules, such as those provided in ASME, BS, and so on, the procedures for the assessment of these flaws have not yet been defined. In this paper, a reference stress, incorporating the decrease in the effective cross section as a function of flaw depth and flaw angle in a cylinder, has been proposed in order to assess the flaws using the simple p-M (pressure-moment) diagram method. Numerous finite element analyses for a cylinder with overlapped internal and external flaws were conducted to verify the proposed procedure. There is good agreement among them.


Author(s):  
Takuyo Kaida ◽  
Shinsuke Sakai

Reliability analysis considering data uncertainties can be used to make a rational decision as to whether to run or repair a pressure equipment that contains a flaw. Especially, partial safety factors (PSF) method is one of the most useful reliability analysis procedure and considered in a Level 3 assessment of a crack-like flaw in API 579-1/ASME FFS-1:2016. High Pressure Institute of Japan (HPI) formed a committee to develop a HPI FFS standard including PSF method. To apply the PSF method effectively, the safety factors for each dominant variable should be prepared before the assessment. In this paper, PSF for metal loss assessment of typical pressure vessels are derived based on first order reliability method (FORM). First, a limit state function and stochastic properties of random variables are defined. The properties of a typical pressure vessel are based on actual data of towers in petroleum and petrochemical plants. Second, probability of failure in several cases are studied by Hasofer-Lind method. Finally, PSF’s in each target probability of failure are proposed. HPI published a new technical report, HPIS Z 109 TR:2016, that provide metal loss assessment procedures based on FORM and the proposed PSF’s described in this paper.


Author(s):  
Greg Thorwald ◽  
Pedro Vargas

The reference stress for axial (longitudinal) surface cracks in cylinders is compared using equations from the 2016 API 579-1/ASME FFS-1 and BS 7910:2013 engineering standards, and by using J-integral values from elastic-plastic Finite Element Analysis of three-dimensional crack meshes to compute crack front reference stress. The cylinder axial surface crack reference stress solutions from the two standards differ, and further examination and comparison is desired. To evaluate if a crack is unstable and may cause catastrophic structural failure, the Failure Assessment Diagram method provides an evaluation using two ratios: brittle fracture and plastic collapse. The FAD vertical axis gives the Kr stress intensity to toughness ratio, and the FAD horizontal axis gives the Lr reference stress to yield strength ratio. The details of the FAD method are described in both standards, along with stress intensity and reference stress solutions for various geometries and crack shapes. Since the cylinder axial surface crack reference stress solutions from API 579 and BS 7910 differ, J-integral values are used to compute reference stress trends that provide additional insight and reveal if there is agreement with one or the other or neither standard. Computing reference stress from crack front J-integral results is described in API 579 Annex 9G Section 9G.4. A 3D crack mesh is created for each crack and cylinder size. Along the crack front the focused mesh pattern uses initially coincident groups of nodes at each crack front position. The group of nodes at each location on the crack front are initially coincident and can separate to help model the blunting at the crack front as the loading increases and local plasticity occurs. Post processing calculations use the J-integral versus load trend and the material specific Kr at Lr = 1 ratio to determine the reference stress geometry factor. The reference stress is computed at each crack front node to find the maximum crack front reference stress value for comparison to the engineering standards’ reference stress solutions. A range of surface crack sizes in thin to thick wall cylinders with internal pressure are used to examine reference stress trends. Standard pipe sizes and typical pipeline steel material is used in the analysis. The difference in reference stress solutions was found during an engineering critical assessment, so the J-integral approach was used to improve the solution to reduce conservatism and allow the component to remain in service.


Sign in / Sign up

Export Citation Format

Share Document