Stress perturbation caused by multistage hydraulic fracturing: Implications for deep fault reactivation

Author(s):  
Mengke An ◽  
Fengshou Zhang ◽  
Egor Dontsov ◽  
Derek Elsworth ◽  
Hehua Zhu ◽  
...  
SPE Journal ◽  
2019 ◽  
Vol 25 (02) ◽  
pp. 692-711 ◽  
Author(s):  
Fengshou Zhang ◽  
Zirui Yin ◽  
Zhaowei Chen ◽  
Shawn Maxwell ◽  
Lianyang Zhang ◽  
...  

Summary This paper presents a case study of fault reactivation and induced seismicity during multistage hydraulic fracturing in Sichuan Basin, China. The field microseismicity data delineate a fault activated near the toe of the horizontal well. The spatio-temporal characteristics of the microseismicity indicate that the seismic activity on the fault during the first three stages is directly related to the fluid injection, while after Stage 3, the seismic activity is possibly due to the relaxation of the fault. The fault-related events have larger magnitudes and different frequency-magnitude characteristics compared to the fracturing-related events. Three-dimensional (3D) fully coupled distinct element geomechanical modeling for the first two hydraulic fracturing stages and a shut-in stage between them is performed. The modeling result generates features of microseismicity similar to that of the field data. The energy budget analysis indicates that the aseismic deformation consumes a major part of the energy. The simulated fault shear displacement is also consistent with the casing deformation measured in the field. The model is also used to investigate the impact of possible operational changes on expected seismic responses. The results show that lower injection rate and lower fluid viscosity would be helpful in reducing casing deformation but not in mitigating seismicity. Decreasing the total fluid injection volume is an effective way to mitigate the seismicity, but it may hinder the stimulation of the reservoir formation and the production of the well.


2016 ◽  
Author(s):  
Ali Al-Ghaithi ◽  
Fahad Alawi ◽  
Ernest Sayapov ◽  
Ehab Ibrahim ◽  
Najet Aouchar ◽  
...  

2021 ◽  
Author(s):  
Nikolay Mikhaylovich Migunov ◽  
Aleksey Dmitrievich Alekseev ◽  
Dinar Farvarovich Bukharov ◽  
Vadim Alexeevich Kuznetsov ◽  
Aleksandr Yuryevich Milkov ◽  
...  

Abstract According to the US Energy Agency (EIA), Russia is the world leader in terms of the volume of technically recoverable "tight oil" resources (U.S. Department of Energy, 2013). To convert them into commercial production, it is necessary to create cost-effective development technologies. For this purpose, a strategy has been adopted, which is implemented at the state level and one of the key elements of which is the development of the high-tech service market. In 2017, the Minister of Energy of the Russian Federation, in accordance with a government executive order (Government Executive Order of the Russian Federation, 2014), awarded the Gazprom Neft project on the creation of a complex of domestic technologies and high-tech equipment for developing the Bazhenov formation with the national status. It is implemented in several directions and covers a wide range of technologies required for the horizontal wells drilling and stimulating flows from them using multi-stage hydraulic fracturing (MS HF) methods. Within the framework of the technological experiment implemented at the Palyanovskaya area at the Krasnoleninskoye field by the Industrial Integration Center "Gazpromneft - Technological Partnerships" (a subsidiary of Gazprom Neft), from 2015 to 2020, 29 high-tech wells with different lengths of horizontal wellbore were constructed, and multistage hydraulic fracturing operations were performed with various designs. Upon results of 2020, it became possible to increase annual oil production from the Bazhenov formation by 78 % in comparison with up to 100,000 tons in 2019. The advancing of development technologies allowed the enterprise to decrease for more than twice the cost of the Bazhenov oil production from 30 thousand rubles per ton (69$/bbl) at the start of the project in 2015 to 13 thousand rubles (24$/bbl) in 2020. A significant contribution to the increase in production in 2020 was made by horizontal wells, where MS HF operations were carried out using an experimental process fluid, which is based on the modified Si Bioxan biopolymer. This article is devoted to the background of this experiment and the analysis of its results.


2021 ◽  
Author(s):  
Vil Syrtlanov ◽  
Yury Golovatskiy ◽  
Konstantin Chistikov ◽  
Dmitriy Bormashov

Abstract This work presents the approaches used for the optimal placement and determination of parameters of hydraulic fractures in horizontal and multilateral wells in a low-permeability reservoir using various methods, including 3D modeling. The results of the production rate of a multilateral dualwellbore well are analyzed after the actual hydraulic fracturing performed on the basis of calculations. The advantages and disadvantages of modeling methods are evaluated, recommendations are given to improve the reliability of calculations for models with hydraulic fracturing (HF)/ multistage hydraulic fracturing (MHF).


2021 ◽  
Author(s):  
Mikhail Yurievich Golenkin ◽  
Denis Vladimirovich Eliseev ◽  
Alexander Anatolyevich Zemchikhin ◽  
Alexey Alexandrovich Borisenko ◽  
Akhmat Sakhadinovich Atabiyev ◽  
...  

Abstract The paper describes the results of the first multistage hydraulic fracturing operations in Russia on the Caspian Sea shelf in the gas condensate and oil deposits of the Aptian formation of V. Filanovsky field. In addition to the small productive formation depth, long horizontal sections with a complex trajectory and high collapse gradients due to large zenith angles when passing the Albian and Aptian deposits of poorly consolidated sandstones are an additional challenge for choosing a multistage hydraulic fracturing assembly. The above features require the use of modern sand control screens with enhanced frac sleeves. A design was developed which includes frac sleeves and sand control screens that can withstand multiple cycles of hydraulic impact during hydraulic fracturing, as well as many opening/closing cycles. A seawater-based frac fluid system was applied. The frac fleet was located on a pontoon, the coiled tubing – on a platform. For the first time in Russia, a 2-5/8 inch coiled tubing with a complex-type friction reducing system was used to switch coupling/sleeves in conditions of very long horizontal sections, complex trajectories, and high friction coefficients. The minimum distances between the screen's sliding sleeves and frac sleeves did not prevent from performing manipulations in complex environment. For well cleaning, the frac assemblies of reverse rotary-pulse and rotary-directional types were used. At the first stage of the project, the development of an optimal method of well completion was successfully implemented. Due to the close interaction of the operating company, service company, and science & engineering team of the operator, for the first time in Russia the design of downhole equipment with the use of advanced technologies of sand control screens, frac sleeves was presented. This solution has proved its effectiveness – the downhole equipment has retained its operational properties after a long period of well operation and further in the process of hydraulic fracturing. At the second stage of the project, 32 MSHF operations were performed at four wells. To reduce nonproductive time and operational risks, a satellite communication complex was additionally deployed on the pontoon to join the engineering centers of Astrakhan, Moscow, and Houston. After finishing the well development, the design indicators for formation fluid rates were achieved, which proved the effectiveness of the stimulation of the field's target objects – this opens great prospects for further development of low-permeability reservoirs at offshore sites in the Caspian Sea. The successful project implementation and the achievement of the design values of oil flow rates has expanded the possibilities of commercial operation of the low-permeable Aptian formation, complicated by the presence of a gas cap and underlying water. A solution was presented for working in extended horizontal well sections with 2-5/8 inch coiled tubing together with a complex-type mechanical friction reducing system. The economic effect was achieved when solving tasks of manipulating mechanical screen couplings and frac port sleeves without the involvement of downhole tractors. The use of new solutions in the completion assembly made it possible to eliminate additional sand ingress problems.


Sign in / Sign up

Export Citation Format

Share Document