Effects of the casing step size on the tip leakage flow pattern and heat transfer characteristic of turbine blade squealer tip

2022 ◽  
Vol 174 ◽  
pp. 107442
Author(s):  
Shijie Jiang ◽  
Zhigang Li ◽  
Jun Li
2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Sergen Sakaoglu ◽  
Harika S. Kahveci

Abstract The pressure difference between suction and pressure sides of a turbine blade leads to tip leakage flow, which adversely affects the first-stage high-pressure (HP) turbine blade tip aerodynamics. In modern gas turbines, HP turbine blade tips are exposed to extreme thermal conditions requiring cooling. If the coolant jet directed into the blade tip gap cannot counter the leakage flow, it will simply add up to the pressure losses due to leakage. Therefore, the compromise between the aerodynamic loss and the gain in tip-cooling effectiveness must be optimized. In this paper, the effect of tip-cooling configuration on the turbine blade tip is investigated numerically from both aerodynamics and thermal aspects to determine the optimum configuration. Computations are performed using the tip cross section of GE-E3 HP turbine first-stage blade for squealer and flat tips, where the number, location, and diameter of holes are varied. The study presents a discussion on the overall loss coefficient, total pressure loss across the tip clearance, and variation in heat transfer on the blade tip. Increasing the coolant mass flow rate using more holes or by increasing the hole diameter results in a decrease in the area-averaged Nusselt number on the tip floor. Both aerodynamic and thermal response of squealer tips to the implementation of cooling holes is superior to their flat counterparts. Among the studied configurations, the squealer tip with a larger number of cooling holes located toward the pressure side is highlighted to have the best cooling performance.


Author(s):  
Sergen Sakaoglu ◽  
Harika S. Kahveci

Abstract The pressure difference between suction and pressure sides of a turbine blade leads to the so-called phenomenon, the tip leakage flow, which most adversely affects the first-stage high-pressure (HP) turbine blade tip aerodynamics. In modern gas turbines, HP turbine blade tips are also exposed to extreme thermal conditions requiring the use of tip cooling. If the coolant jet directed into the blade tip gap cannot counter the leakage flow, it will simply add up to the pressure losses due to this leakage flow. Therefore, it is necessary to handle the design of tip cooling in such a way that the compromise between the aerodynamic loss and the gain in the tip cooling effectiveness is optimized. In this paper, the effect of tip cooling configuration on the turbine blade tip is investigated numerically both from the aerodynamics and thermal aspects in order to determine the optimum tip cooling configuration. The studies are carried out using the tip cross-section of General Electric E3 (Energy Efficient Engine) HP turbine first-stage blade for two different tip geometries, squealer tip and flat tip, where the number, location, and diameter of the cooling holes are varied. The study presents a discussion on the overall loss coefficient, the total pressure loss across the tip clearance, and the variation of heat transfer on the blade tip. The aerodynamic and heat transfer results are compared with the experimental data from literature. It is observed that increasing the coolant mass flow rate by using more holes or by increasing the hole diameter results in a decrease in the area-averaged Nusselt number on the tip floor, as expected. The findings show that both aerodynamic and thermal response of the squealer tips to the implementation of cooling holes is superior to their flat counterparts. Among the studied configurations, the squealer tip with larger number of cooling holes located towards the pressure side is highlighted as the configuration having the best cooling performance.


Author(s):  
Dianliang Yang ◽  
Xiaobing Yu ◽  
Zhenping Feng

In this paper, numerical methods have been applied to the investigation of the effect of rotation on the blade tip leakage flow and heat transfer. Using the first stage rotor blade of GE-E3 engine high pressure turbine, both flat tip and squealer tip have been studied. The tip gap height is 1% of the blade height, and the groove depth of the squealer tip is 2% of the blade height. Heat transfer coefficient on tip surface obtained by using different turbulence models was compared with experimental results. And the grid independence study was carried out by using the Richardson extrapolation method. The effect of the blade rotation was studied in the following cases: 1) blade domain is rotating and shroud is stationary; 2) blade domain is stationary and shroud is rotating; and 3) both blade domain and shroud are stationary. In this approach, the effects of the relative motion of the endwall, the centrifugal force and the Coriolis force can be investigated respectively. By comparing the results of the three cases discussed, the effects of the blade rotation on tip leakage flow and heat transfer are revealed. It indicated that the main effect of the rotation on the tip leakage flow and heat transfer is resulted from the relative motion of the shroud, especially for the squealer tip blade.


Author(s):  
S. K. Krishnababu ◽  
H. P. Hodson ◽  
G. D. Booth ◽  
G. D. Lock ◽  
W. N. Dawes

A numerical investigation of the flow and heat transfer characteristics of tip leakage in a typical film cooled industrial gas turbine rotor is presented in this paper. The computations were performed on a rotating domain of a single blade with a clearance gap of 1.28% chord in an engine environment. This standard blade featured two coolant and two dust holes, in a cavity-type tip with a central rib. The computations were performed using CFX 5.6, which was validated for similar flow situations by Krishnababu et al., [18]. These predictions were further verified by comparing the flow and heat transfer characteristics computed in the absence of coolant ejection with computations previously performed in the company (SIEMENS) using standard in-house codes. Turbulence was modelled using the SST k-ω turbulence model. The comparison of calculations performed with and without coolant ejection has shown that the coolant flow partially blocks the tip gap, resulting in a reduction of the amount of mainstream leakage flow. The calculations identified that the main detrimental heat transfer issues were caused by impingement of the hot leakage flow onto the tip. Hence three different modifications (referred as Cases 1 to 3) were made to the standard blade tip in an attempt to reduce the tip gap exit mass flow and the associated impingement heat transfer. The improvements and limitations of the modified geometries, in terms of tip gap exit mass flow, total area of the tip affected by the hot flow and the total heat flux to the tip, are discussed. The main feature of the Case 1 geometry is the removal of the rib and this modification was found to effectively reduce both the total area affected by the hot leakage flow and total heat flux to the tip while maintaining the same leakage mass flow as the standard blade. Case 2 featured a rearrangement of the dust holes in the tip which, in terms of aero-thermal-dynamics, proved to be marginally inferior to Case 1. Case 3, which essentially created a suction-side squealer geometry, was found to be inferior even to the standard cavity tip blade. It was also found that the hot spots which occur in the leading edge region of the standard tip and all modifications contributed significantly to the area affected by the hot tip leakage flow and the total heat flux.


Author(s):  
Qihe Huang ◽  
Jiao Wang ◽  
Lei He ◽  
Qiang Xu

A numerical study is performed to simulate the tip leakage flow and heat transfer on the first stage rotor blade tip of GE-E3 turbine, which represents a modern gas turbine blade geometry. Calculations consist of the flat blade tip without and with film cooling. For the flat tip without film cooling case, in order to investigate the effect of tip gap clearance on the leakage flow and heat transfer on the blade tip, three different tip gap clearances of 1.0%, 1.5% and 2.5% of the blade span are considered. And to assess the performance of the turbulence models in correctly predicting the blade tip heat transfer, the simulations have been performed by using four different models (the standard k-ε, the RNG k-ε, the standard k-ω and the SST models), and the comparison shows that the standard k-ω model provides the best results. All the calculations of the flat tip without film cooling have been compared and validated with the experimental data of Azad[1] and the predictions of Yang[2]. For the flat tip with film cooling case, three different blowing ratio (M = 0.5, 1.0, and 1.5) have been studied to the influence on the leakage flow in tip gap and the cooling effectiveness on the blade tip. Tip film cooling can largely reduce the overall heat transfer on the tip. And the blowing ratio M = 1.0, the cooling effect for the blade tip is the best.


Author(s):  
Zhaodan Fei ◽  
Rui Zhang ◽  
Hui Xu ◽  
Tong Mu

In this paper, the groove effect on the tip leakage vortex cavitating flow characteristics of a simplified NACA0009 hydrofoil with tip gap is studied. Considering local rotation characteristics and curvature effects of the tip leakage vortex flow, the rotation-curvature corrected shear-stress-transport turbulence model is applied to simulate the time-averaged turbulent flow. The Zwart–Gerber–Belamri cavitation model is used to simulate the cavitating flow. The results show that the groove could affect the tip leakage vortex cavitating flow. The groove enhances the interaction between the tip leakage flow and main flow, and then it affects the cavitation of the tip leakage vortex. Compared with the non-groove case, for groove cases of αgre ≤75°, the tip leakage vortex cavitating flow is suppressed, the flow pattern in the gap is improved, and the mean leakage velocity Vlk < 0.8. The region of high leakage velocity is eliminated and the distribution of the pressure is more uniform. The tip leakage vortex cavitation area is reduced, and the maximum decrease is 72.90%. While for groove cases of αgre≥90°, neither the tip leakage vortex cavitating flow nor flow pattern in the tip gap is ameliorated, the mean leakage velocity Vlk lies the range from 0.90 to 0.96. The region of high leakage velocity still exists and even the tip leakage vortex cavitation area is increased. Based on three-dimensional streamlines and vorticity transport equation, the interaction between the tip leakage flow and main flow leads to the variation of the tip leakage vortex cavitating flow. This paper aims for a useful reference to mitigate the tip leakage vortex cavitation and control the influence of the tip leakage vortex cavitating flow for the hydraulic machinery.


2019 ◽  
Vol 15 (6) ◽  
pp. 1121-1135
Author(s):  
Fujuan Tong ◽  
Wenxuan Gou ◽  
Lei Li ◽  
Zhufeng Yue ◽  
Wenjing Gao ◽  
...  

Purpose In order to improve the engine reliability and efficiency, an effective way is to reform the turbine blade tip conformation. The paper aims to discuss this issue. Design/methodology/approach The present research provides several novel tip-shaping structures, which are considered to control the blade tip loss. Four different tip geometries have been studied: flat tip, squealer tip, flat tip with streamwise ribs and squealer tip with streamwise ribs. The tip heat transfer and leakage flow are both analyzed in detail, for example the tip heat transfer coefficient, tip flow and local pressure distributions. Findings The results show that the squealer seal and streamwise rib can reduce the tip heat transfer and leakage loss, especially for the squealer tip with streamwise ribs. The tip and near-tip flow patterns at the different locations of axial chord reflect that both the squealer seal and streamwise rib structure can control the tip leakage flow loss. In addition, the analysis of the aerodynamic parameters (the static pressure and turbine efficiency) also indicates that the squealer tip with streamwise ribs obtains the highest adiabatic efficiency with an increase of 2.34 percent, compared with that of the flat tip case. Originality/value The analysis of aerothermal and dynamic performance can provide a reference for the blade tip design and treatment.


Sign in / Sign up

Export Citation Format

Share Document