scholarly journals A comprehensive study on artificial intelligence and machine learning in drug discovery and drug development

Author(s):  
Veer Patel ◽  
Manan Shah
2021 ◽  
pp. 002073142110174
Author(s):  
Md Mijanur Rahman ◽  
Fatema Khatun ◽  
Ashik Uzzaman ◽  
Sadia Islam Sami ◽  
Md Al-Amin Bhuiyan ◽  
...  

The novel coronavirus disease (COVID-19) has spread over 219 countries of the globe as a pandemic, creating alarming impacts on health care, socioeconomic environments, and international relationships. The principal objective of the study is to provide the current technological aspects of artificial intelligence (AI) and other relevant technologies and their implications for confronting COVID-19 and preventing the pandemic’s dreadful effects. This article presents AI approaches that have significant contributions in the fields of health care, then highlights and categorizes their applications in confronting COVID-19, such as detection and diagnosis, data analysis and treatment procedures, research and drug development, social control and services, and the prediction of outbreaks. The study addresses the link between the technologies and the epidemics as well as the potential impacts of technology in health care with the introduction of machine learning and natural language processing tools. It is expected that this comprehensive study will support researchers in modeling health care systems and drive further studies in advanced technologies. Finally, we propose future directions in research and conclude that persuasive AI strategies, probabilistic models, and supervised learning are required to tackle future pandemic challenges.


Author(s):  
Diego Alejandro Dri ◽  
Maurizio Massella ◽  
Donatella Gramaglia ◽  
Carlotta Marianecci ◽  
Sandra Petraglia

: Machine Learning, a fast-growing technology, is an application of Artificial Intelligence that has significantly contributed to drug discovery and clinical development. In the last few years, the number of clinical applications based on Machine Learning has constantly been growing. Moreover, it is now also impacting National Competent Authorities during the assessment of most recently submitted Clinical Trials that are designed, managed, or generating data deriving from the use of Machine Learning or Artificial Intelligence technologies. We review current information available on the regulatory approach to Clinical Trials and Machine Learning. We also provide inputs for further reasoning and potential indications, including six actionable proposals for regulators to proactively drive the upcoming evolution of Clinical Trials within a strong regulatory framework, focusing on patient safety, health protection, and fostering immediate access to effective treatments.


2021 ◽  
Vol 18 ◽  
Author(s):  
Maithri Shanbhogue H ◽  
Shailesh Thirumaleshwar ◽  
Pramod Kumar TM ◽  
Hemanth Kumar S

: Artificial intelligence is an emerging sector in almost all fields. It is not confined only to a particular category and can be used in various fields like research, technology, and health. AI mainly concentrates on how computers analyze data and mimic the human thought process. As drug development involves high R & D costs and uncertainty in time consumption, artificial intelligence can serve as one of the promising solutions to overcome all these demerits. Due to the availability of enormous data, there are chances of missing out on some crucial details. For solving these issues, algorithms like machine learning, deep learning, and other expert systems are being used. On successful implementation of AI in the pharmaceutical field, the delays in drug development, and failure at the clinical and marketing level can be reduced. This review comprises information regarding the development of AI, its subfields, its overall implementation, and its application in the pharmaceutical sector and provides insights on challenges and limitations concerning AI.


2020 ◽  
Author(s):  
Eitan Margulis ◽  
Ayana Dagan-Wiener ◽  
Robert S. Ives ◽  
Sara Jaffari ◽  
Karsten Siems ◽  
...  

AbstractDrug development is a long, expensive and multistage process geared to achieving safe drugs with high efficacy. A crucial prerequisite for completing the medication regimen for oral drugs, particularly for pediatric and geriatric populations, is achieving taste that does not hinder compliance. Currently, the aversive taste of drugs is tested in late stages of clinical trials. This can result in the need to reformulate, potentially resulting in the use of more animals for additional toxicity trials, increased financial costs and a delay in release to the market. Here we present BitterIntense, a machine learning tool that classifies molecules into “very bitter” or “not very bitter”, based on their chemical structure. The model, trained on chemically diverse compounds, has above 80% accuracy on several test sets. BitterIntense suggests that intense bitterness does not correlate with toxicity and hepatotoxicity of drugs and that the prevalence of very bitter compounds among drugs is lower than among microbial compounds. BitterIntense allows quick and easy prediction of strong bitterness of compounds of interest for food and pharma industries. We estimate that implementation of BitterIntense or similar tools early in drug discovery and development process may lead to reduction in delays, in animal use and in overall financial burden.Significance StatementDrug development integrates increasingly sophisticated technologies, but extreme bitterness of drugs remains a poorly addressed cause of medicine regimen incompletion. Reformulating the drug can result in delays in the development of a potential medicine, increasing the lead time to the patients. It might also require the use of extra animals in toxicity trials and lead to increased costs for pharma companies. We have developed a computational predictor for intense bitterness, that has above 80% accuracy. Applying the classifier to annotated datasets suggests that intense bitterness does not correlate with toxicity and hepatotoxicity of drugs. BitterIntense can be used in the early stages of drug development to identify drug candidates that require bitterness masking, and thus reduce animal use, time and monetary loss.


2018 ◽  
Author(s):  
Gonçalo Bernardes ◽  
Tiago Rodrigues ◽  
Markus Werner ◽  
Jakob Roth ◽  
Eduardo H. G. da Cruz ◽  
...  

<div> <div> <div> <p>Chemical matter with often-discarded moieties entails opportunities for drug discovery. Relying on orthogonal ligand-centric machine learning methods, targets were consensually identified as potential counterparts for the fragment-like natural product β-lapachone. Resorting to a comprehensive range of biophysical and biochemical assays, the natural product was validated as a potent, ligand efficient, allosteric and reversible modulator of 5-lipoxygenase (5-LO). Moreover, we provide a rationale for 5-LO-inhibiting chemotypes inspired in the β-lapachone scaffold through a focused analogue library. This work demonstrates the power of artificial intelligence technologies to deconvolute complex phenotypic readouts of clinically relevant chemical matter, leverage natural product-based drug discovery, as an alternative and/or complement to chemoproteomics and as a viable approach for systems pharmacology studies. </p> </div> </div> </div>


2021 ◽  
Author(s):  
Ruby Srivastava

Computational methods play a key role in the design of therapeutically important molecules for modern drug development. With these “in silico” approaches, machines are learning and offering solutions to some of the most complex drug related problems and has well positioned them as a next frontier for potential breakthrough in drug discovery. Machine learning (ML) methods are used to predict compounds with pharmacological activity, specific pharmacodynamic and ADMET (absorption, distribution, metabolism, excretion and toxicity) properties to evaluate the drugs and their various applications. Modern artificial intelligence (AI) has the capacity to significantly enhance the role of computational methodology in drug discovery. Use of AI in drug discovery and development, drug repurposing, improving pharmaceutical productivity, and clinical trials will certainly reduce the human workload as well as achieving targets in a short period of time. This chapter elaborates the crosstalk between the machine learning techniques, computational tools and the future of AI in the pharmaceutical industry.


2018 ◽  
Author(s):  
Gonçalo Bernardes ◽  
Tiago Rodrigues ◽  
Markus Werner ◽  
Jakob Roth ◽  
Eduardo H. G. da Cruz ◽  
...  

<div> <div> <div> <p>Chemical matter with often-discarded moieties entails opportunities for drug discovery. Relying on orthogonal ligand-centric machine learning methods, targets were consensually identified as potential counterparts for the fragment-like natural product β-lapachone. Resorting to a comprehensive range of biophysical and biochemical assays, the natural product was validated as a potent, ligand efficient, allosteric and reversible modulator of 5-lipoxygenase (5-LO). Moreover, we provide a rationale for 5-LO-inhibiting chemotypes inspired in the β-lapachone scaffold through a focused analogue library. This work demonstrates the power of artificial intelligence technologies to deconvolute complex phenotypic readouts of clinically relevant chemical matter, leverage natural product-based drug discovery, as an alternative and/or complement to chemoproteomics and as a viable approach for systems pharmacology studies. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document