Stachydrine ameliorates isoproterenol-induced cardiac hypertrophy and fibrosis by suppressing inflammation and oxidative stress through inhibiting NF-κB and JAK/STAT signaling pathways in rats

2017 ◽  
Vol 48 ◽  
pp. 102-109 ◽  
Author(s):  
Lingling Zhao ◽  
Dawei Wu ◽  
Mengru Sang ◽  
Yiming Xu ◽  
Zhaoguo Liu ◽  
...  
Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 802
Author(s):  
Teresa Vezza ◽  
Aranzazu M. de Marañón ◽  
Francisco Canet ◽  
Pedro Díaz-Pozo ◽  
Miguel Marti ◽  
...  

Type 2 diabetes is a chronic disease widespread throughout the world, with significant human, social, and economic costs. Its multifactorial etiology leads to persistent hyperglycemia, impaired carbohydrate and fat metabolism, chronic inflammation, and defects in insulin secretion or insulin action, or both. Emerging evidence reveals that oxidative stress has a critical role in the development of type 2 diabetes. Overproduction of reactive oxygen species can promote an imbalance between the production and neutralization of antioxidant defence systems, thus favoring lipid accumulation, cellular stress, and the activation of cytosolic signaling pathways, and inducing β-cell dysfunction, insulin resistance, and tissue inflammation. Over the last few years, microRNAs (miRNAs) have attracted growing attention as important mediators of diverse aspects of oxidative stress. These small endogenous non-coding RNAs of 19–24 nucleotides act as negative regulators of gene expression, including the modulation of redox signaling pathways. The present review aims to provide an overview of the current knowledge concerning the molecular crosstalk that takes place between oxidative stress and microRNAs in the physiopathology of type 2 diabetes, with a special emphasis on its potential as a therapeutic target.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Srinivas Sriramula ◽  
Nithya Mariappan ◽  
Elizabeth McILwain ◽  
Joseph Francis

Tumor necrosis factor-alpha (TNF-α) and angiotensin II (Ang II) play an important role in the pathophysiology of cardiovascular disease in part by inducing the cardiac hypertrophic response and oxidative stress. Recently we demonstrated that angiotensin induced hypertensive response is attenuated in mice lacking the gene for TNF-α. In this study, we examined whether Ang II induced cardiac hypertrophy and increased oxidative stress is mediated through TNF-α. Methods and results: Male TNF-α (−/−) and age matched control (WT) mice were subcutaneously implanted with osmotic minipumps containing Ang II (1 μg/kg/min) or saline for 14 days. Human recombinant TNF-α was injected in one group of TNF-α (−/−) mice (10 μg/kg/day) for 14 days. In WT+Ang mice, a temporal increase in blood pressure was observed during the study as measured by radio telemetry transmitters. At the end of the study, echocardiography revealed an increase in thickness and dimensions of left ventricle (LV) and decreased fractional shortening (%FS) in WT+Ang mice. Real time RT-PCR showed that Ang II- infusion resulted in an increase in heart/bodyweight ratio and of cardiac hypertrophy markers ANP and BNP, and profibrotic genes Collagen Type I, Collagen Type II, and TGF-β in WT mice. Electron Spin resonance spectroscopy revealed an increase in total ROS, superoxide and peroxynitrite in the WT+ANG mice when compared to control WT mice. However, these changes were all attenuated in TNF-α (−/−)+Ang mice. Ang II infusion also increased significantly the mRNA expression of gp91Phox, NOX-1, NOX-4 and AT1R in the LV of WT mice, but not in TNF-α (−/−) mice. Interestingly, injection of TNF-α in the TNF-α (−/−) mice, treated with Ang II resulted in increased cardiac hypertrophy and oxidative stress. Conclusions: Findings from the present study suggest that TNF-α plays an important role in the development of cardiac hypertrophy and oxidative stress in Ang II-induced hypertension.


2009 ◽  
Vol 15 (7) ◽  
pp. S166
Author(s):  
Miho Kitamura ◽  
Miyuki Kobara ◽  
Akiko Furumori ◽  
Kazuki Noda ◽  
Tatsuya Shiraishi ◽  
...  

2008 ◽  
Vol 295 (2) ◽  
pp. E323-E330 ◽  
Author(s):  
Christos Tikellis ◽  
Merlin C. Thomas ◽  
Brooke E. Harcourt ◽  
Melinda T. Coughlan ◽  
Josepha Pete ◽  
...  

A diet high in fat induces cardiac hypertrophy, inflammation, and oxidative stress. Although such actions have largely been ascribed to fat deposition, the accumulation of advanced glycation end products (AGEs) and subsequent activation of the receptor for AGEs (RAGE) may also represent important mediators of cardiac injury following exposure to a Western diet. In this study, male C57BL6J and RAGE knockout mice were placed on either a standard diet (7% fat) or a Western “fast-food” diet (21% fat). Animals receiving a high-fat diet were further randomized to receive the AGE inhibitor alagebrium chloride (1 mg·kg−1·day−1) and followed for 16 wk. A Western diet was associated with cardiac hypertrophy, inflammation, mitochondrial-dependent superoxide production, and cardiac AGE accumulation in wild-type mice. Although RAGE-KO mice fed a Western diet also became obese and accumulated intramyocardial lipid, cardiomyocyte hypertrophy, inflammation, and oxidative stress were attenuated compared with wild-type mice. Similarly, mice of both strains receiving alagebrium chloride had reduced levels of inflammation and oxidative stress, in association with a reduction in cardiac AGEs and RAGE. This study suggests that AGEs represent important mediators of cardiac injury associated with a Western fast-food diet. These data point to the potential utility of AGE-reducing strategies in the prevention and management of cardiac disease.


Sign in / Sign up

Export Citation Format

Share Document