Abstract 1476: Angiotensin II Induced Hypertrophic Response And Oxidative Stress Is Attenuated In Mice Lacking The Gene For Tnf-α

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Srinivas Sriramula ◽  
Nithya Mariappan ◽  
Elizabeth McILwain ◽  
Joseph Francis

Tumor necrosis factor-alpha (TNF-α) and angiotensin II (Ang II) play an important role in the pathophysiology of cardiovascular disease in part by inducing the cardiac hypertrophic response and oxidative stress. Recently we demonstrated that angiotensin induced hypertensive response is attenuated in mice lacking the gene for TNF-α. In this study, we examined whether Ang II induced cardiac hypertrophy and increased oxidative stress is mediated through TNF-α. Methods and results: Male TNF-α (−/−) and age matched control (WT) mice were subcutaneously implanted with osmotic minipumps containing Ang II (1 μg/kg/min) or saline for 14 days. Human recombinant TNF-α was injected in one group of TNF-α (−/−) mice (10 μg/kg/day) for 14 days. In WT+Ang mice, a temporal increase in blood pressure was observed during the study as measured by radio telemetry transmitters. At the end of the study, echocardiography revealed an increase in thickness and dimensions of left ventricle (LV) and decreased fractional shortening (%FS) in WT+Ang mice. Real time RT-PCR showed that Ang II- infusion resulted in an increase in heart/bodyweight ratio and of cardiac hypertrophy markers ANP and BNP, and profibrotic genes Collagen Type I, Collagen Type II, and TGF-β in WT mice. Electron Spin resonance spectroscopy revealed an increase in total ROS, superoxide and peroxynitrite in the WT+ANG mice when compared to control WT mice. However, these changes were all attenuated in TNF-α (−/−)+Ang mice. Ang II infusion also increased significantly the mRNA expression of gp91Phox, NOX-1, NOX-4 and AT1R in the LV of WT mice, but not in TNF-α (−/−) mice. Interestingly, injection of TNF-α in the TNF-α (−/−) mice, treated with Ang II resulted in increased cardiac hypertrophy and oxidative stress. Conclusions: Findings from the present study suggest that TNF-α plays an important role in the development of cardiac hypertrophy and oxidative stress in Ang II-induced hypertension.

Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Katherine J Elliott ◽  
Toshiyuki Tsuji ◽  
Takashi Obama ◽  
Takehiko Takayanagi ◽  
Steven Forrester ◽  
...  

In cultured vascular smooth muscle cells (VSMC), a metalloprotease ADAM17-dependent EGF receptor (EGFR) activation mediates ERK1/2 activation and subsequent hypertrophy induced by angiotensin II (Ang II). Both ER and oxidative stress are implicated in hypertensive end-organ damage. We hypothesized that pharmacological inhibition of EGFR may prevent end-organ damage but not hypertension in mice infused with Ang II via suppression of ER/oxidative stress. To test this hypothesis, we have evaluated Ang II-induced end-organ damage as well as hypertension in C57Bl/6 mice with or without an EGFR inhibitor erlotinib (20mg/kg/day ip) or ER stress inhibitor 4-phenyl butyric acid (PBA: 1g/kg/day in drinking water). Upon Ang II infusion (1000 ng/kg/min) for 2 weeks, control mice showed phenotypes of cardiac hypertrophy including increased HW/BW ratio (mg/g: 7.9±0.7 vs 5.7±0.6 p<0.01 n=8) and increased LVPWd assessed by cardiac echo (mm: 0.98±0.14 vs 0.69±0.05, p<0.05 n=8) compared with saline infusion. Histological assessments demonstrated medial hypertrophy and perivascular fibrosis of coronary arteries with Ang II infusion. In contrast, cardiac hypertrophy and vascular remodeling were attenuated in mice with Ang II plus erlotinib or PBA; HW/BW ratio (6.8±0.6 or 6.2±0.6 n=8), and cardiac echo (LVPWd: 0.65±0.07 or 0.80±0.07 n=8) compared with saline infusion. Renal fibrosis observed with Ang II infusion was also attenuated in mice with Ang II plus erotinib or PBA. However, Ang II induced similar levels of hypertension in non-treated, erlotinib-treated or PBA-treated mice assessed by telemetry (MAP mmHg: 144±9 vs 149±20 or 139±4). Ang II infusion in mice enhanced ADAM17 and phospho-Tyr EGFR staining in vasculatures of heart and kidney, whereas mice with Ang II plus erlotinib or PBA had diminished phospho-Tyr EGFR staining and no ADAM17 staining in the vasculatures. In addition, IHC analyses revealed less oxidative stress and less ER stress in heart and kidney of Ang II-infused mice with erlotinib or PBA. These data suggest that EGFR activation and subsequent ER stress enhancement are critical for end organ damage via induction of ADAM17 and oxidative stress and is independent from blood pressure regulation.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Yan Gao ◽  
Di Zhao ◽  
Wen-zhi Xie ◽  
Tingting Meng ◽  
Chunxiao Xu ◽  
...  

Abnormal autophagy and oxidative stress contribute to angiotensin II- (Ang II-) induced cardiac hypertrophy and heart failure. We previously showed that Ang II increased Rap1GAP gene expression in cardiomyocytes associated with hypertrophy and autophagy disorders. Using real-time PCR and Western blot, we found that Rap1GAP expression was increased in the heart of Sprague Dawley (SD) rats infused by Ang II compared with saline infusion and in Ang II vs. vehicle-treated rat neonatal cardiomyocytes. Overexpression of Rap1GAP in cultured cardiomyocytes exacerbated Ang II-induced cardiomyocyte hypertrophy, reactive oxygen species (ROS) generation, and cell apoptosis and inhibited autophagy. The increased oxidative stress caused by Rap1GAP overexpression was inhibited by the treatment of autophagy agonists. Knockdown of Rap1GAP by siRNA markedly attenuated Ang II-induced cardiomyocyte hypertrophy and oxidative stress and enhanced autophagy. The AMPK/AKT/mTOR signaling pathway was inhibited by overexpression of Rap1GAP and activated by the knockdown of Rap1GAP. These results show that Rap1GAP-mediated pathway might be a new mechanism of Ang II-induced cardiomyocyte hypertrophy, which could be a potential target for the future treatment of cardiac hypertrophy and heart failure.


Endocrinology ◽  
2009 ◽  
Vol 150 (6) ◽  
pp. 2857-2864 ◽  
Author(s):  
Yasumasa Ikeda ◽  
Ken-ichi Aihara ◽  
Sumiko Yoshida ◽  
Takashi Sato ◽  
Shusuke Yagi ◽  
...  

Age-related andropause promotes cardiovascular disease in males. Although we had previously reported that the androgen-androgen receptor (AR) system plays important roles in cardiac growth and remodeling, the system’s involvement in vascular remodeling remains unclear. To clarify this role, 25-wk-old male AR knockout (ARKO) mice and littermate male wild-type (WT) mice were divided into two groups with and without angiotensin II (Ang II) administration (2.0 mg/kg · d) for 14 d, respectively. No morphological differences in the coronary artery and thoracic aorta were observed between the groups without Ang II. Ang II stimulation markedly increased medial thickness and perivascular fibrosis in ARKO mice, with enhanced TGF-β1, collagen type I, and collagen type III gene expression in the aorta. Ang II stimulation also prominently increased superoxide production, lipid peroxidation, and gene expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase components in ARKO mice compared with WT mice. In addition, phosphorylation of c-Jun N-terminal kinase (JNK) and phosphorylated (Smad2/3) was remarkably enhanced in Ang II-treated ARKO mice compared with Ang II-treated WT mice. Notably, daily urinary nitric oxide (NO) metabolites excretion as a marker of NO bioavailability, aortic endothelial NO synthase expression and phosphorylation, and Akt phosphorylation were significantly reduced in ARKO mice compared with WT mice, regardless of Ang II stimulation. In conclusion, the androgen-AR system is required for the preservation of NO bioavailability through Akt-endothelial NO synthase system activation and exerts protective effects against Ang II-induced vascular remodeling by regulating oxidative stress, c-Jun N-terminal kinase (JNK) signaling, and the TGF-β-phosphorylated Smad pathway.


2013 ◽  
Vol 126 (4) ◽  
pp. 275-288 ◽  
Author(s):  
Hangxiang Zhang ◽  
Jing Wu ◽  
Hailong Dong ◽  
Shaukat A. Khan ◽  
Mon-Li Chu ◽  
...  

AngII (angiotensin II) is a potent neurohormone responsible for cardiac hypertrophy, in which TGF (transforming growth factor)-β serves as a principal downstream mediator. We recently found that ablation of fibulin-2 in mice attenuated TGF-β signalling, protected mice against progressive ventricular dysfunction, and significantly reduced the mortality after experimental MI (myocardial infarction). In the present study, we investigated the role of fibulin-2 in AngII-induced TGF-β signalling and subsequent cardiac hypertrophy. We performed chronic subcutaneous infusion of AngII in fibulin-2 null (Fbln2−/−), heterozygous (Fbln2+/−) and WT (wild-type) mice by a mini-osmotic pump. After 4 weeks of subpressor dosage of AngII infusion (0.2 μg/kg of body weight per min), WT mice developed significant hypertrophy, whereas the Fbln2−/− showed no response. In WT, AngII treatment significantly up-regulated mRNAs for fibulin-2, ANP (atrial natriuretic peptide), TGF-β1, Col I (collagen type I), Col III (collagen type III), MMP (matrix metalloproteinase)-2 and MMP-9, and increased the phosphorylation of TGF-β-downstream signalling markers, Smad2, TAK1 (TGF-β-activated kinase 1) and p38 MAPK (mitogen-activated protein kinase), which were all unchanged in AngII-treated Fbln2−/− mice. The Fbln2+/− mice consistently displayed AngII-induced effects intermediate between WT and Fbln2−/−. Pressor dosage of AngII (2 mg/kg of body weight per min) induced significant fibrosis in WT but not in Fbln2−/− mice with comparable hypertension and hypertrophy in both groups. Isolated CFs (cardiac fibroblasts) were treated with AngII, in which direct AngII effects and TGF-β-mediated autocrine effects was observed in WT. The latter effects were totally abolished in Fbln2−/− cells, suggesting that fibulin-2 is essential for AngII-induced TGF-β activation. In conclusion our data indicate that fibulin-2 is essential for AngII-induced TGF-β-mediated cardiac hypertrophy via enhanced TGF-β activation and suggest that fibulin-2 is a potential therapeutic target to inhibit AngII-induced cardiac remodelling.


Author(s):  
Ramalingam ◽  
Santhanathas ◽  
Shaukat Ali ◽  
Zainalabidin

Prolonged exposure to nicotine accelerates onset and progression of renal diseases in habitual cigarette smokers. Exposure to nicotine, either via active or passive smoking is strongly shown to enhance renal oxidative stress and augment kidney failure in various animal models. In this study, we investigated the effects of resveratrol supplementation on nicotine-induced kidney injury and oxidative stress in a rat model. Male Sprague-Dawley rats were given nicotine (0.6 mg/kg, i.p.) alone or in combination with either resveratrol (8 mg/kg, i.p.), or angiotensin II type I receptor blocker, irbesartan (10 mg/kg, p.o.) for 28 days. Upon completion of treatment, kidneys were investigated for changes in structure, kidney injury markers and oxidative stress. Administration of nicotine alone for 28 days resulted in significant renal impairment as shown by marked increase in plasma creatinine, blood urea nitrogen (BUN) and oxidative stress. Co-administration with resveratrol however successfully attenuated these changes, with a concomitant increase in renal antioxidants such as glutathione similar to the conventionally used angiotensin II receptor blocker, irbesartan. These data altogether suggest that targeting renal oxidative stress with resveratrol could alleviate nicotine-induced renal injury. Antioxidants may be clinically important for management of renal function in habitual smokers.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Depei Liu ◽  
Yu-Xuan Luo ◽  
Xiaoqiang Tang ◽  
Xi-Zhou An ◽  
Xue-Min Xie ◽  
...  

Aims: Oxidative stress contributes to the development of cardiac hypertrophy and heart failure. One of the mitochondrial sirtuins, Sirt4, is highly expressed in the heart, but its function remains unknown. The aim of the present study was to investigate the role of Sirt4 in the pathogenesis of pathological cardiac hypertrophy and the molecular mechanism by which Sirt4 regulates mitochondrial oxidative stress. Methods and results: Male C57BL/6 Sirt4 knockout mice, transgenic mice exhibiting cardiac-specific overexpression of Sirt4 (Sirt4-Tg) and their respective controls were treated with angiotensin II (Ang II). At 4 weeks, hypertrophic growth of cardiomyocytes, fibrosis and cardiac function were analyzed. Sirt4 deficiency conferred resistance to Ang II infusion by significantly suppressing hypertrophic growth, and the deposition of fibrosis. In Sirt4-Tg mice, aggravated hypertrophy and reduced cardiac function were observed compared with non-transgenic mice following Ang II treatment. Mechanistically, Sirt4 inhibited the binding of manganese superoxide dismutase (MnSOD) to Sirt3, another member of the mitochondrial sirtuins, and increased MnSOD acetylation levels to reduce its activity, resulting in elevated reactive oxygen species (ROS) accumulation upon Ang II stimulation. Furthermore, inhibition of ROS with MnTBAP, a mimetic of SOD, blocked the Sirt4-mediated aggravation of the hypertrophic response in Ang II-treated Sirt4-Tg mice. Conclusions: Sirt4 promotes hypertrophic growth and cardiac dysfunction by increasing ROS levels upon pathological stimulation. These findings reveal a role of Sirt4 in pathological cardiac hypertrophy, providing a new potential therapeutic strategy for this disease.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Antonio Tapia ◽  
Juan M Moreno ◽  
Maria T Llinas ◽  
F. Javier Salazar

Numerous studies have shown gender-dependent differences in the deterioration of renal function in models of developmental programming of hypertension (DPH). It is also known that obesity is associated to changes in renal function and that both angiotensin II (Ang II) and oxidative stress are involved in the renal alterations that occur in obesity and in animals with DPH. The main objectives were to examine whether the increment of arterial pressure (AP) and the deterioration of renal function are accelerated as a consequence of obesity in SD rats with DPH; whether these changes are gender-dependent; and to evaluate the role of Ang II and oxidative stress in these AP and renal function changes. A high fat diet (60%) was given during the first 4 months of age and DPH was induced by an AT receptor antagonist during nephrogenic period (ARAnp). Systolic AP (mmHg) was greater (P<0.05) in ARAnp-obese rats (167 ± 3 in ♂; 146 ± 4 in ♀) than in ARAnp (155 ± 3 in ♂; 137 ± 3 in ♀); obese (147 ± 2 in ♂; 137 ± 2 in ♀) or control (127 ± 1 in ♂; 119 ± 2 in ♀) rats. Three days administration of candesartan (7 mg/kg/day) led to a decrease in AP that was greater (P<0.05) in ARAnp-obese rats (55 ± 3 in ♂; 45 ± 4 in ♀) than in ARAnp (40 ± 3 in ♂; 37 ± 4 in ♀); obese (38 ± 4 in ♂; 27 ± 4 in ♀) or control (12 ± 2 in ♂; 14 ± 3 in ♀) rats. The acute Ang II infusion (30 ng/kg/min) induced an increase in renal vascular resistance (mmHg/ml/min/gr kw) that was also greater in ARAnp-obese rats (217 ± 45% in ♂; 145 ± 38% in ♀) than in ARAnp (103 ± 9% in ♂; 97 ± 8% in ♀); obese (106 ± 14% in ♂; 106 ± 17 in ♀) or control (51 ± 7% in ♂; 51 ± 10% in ♀) rats. The response to candesartan or Ang II infusion in ARAnp-obese rats was gender-dependent and may be explained by an enhanced oxidative stress. The expression of P67phox in the renal cortex was greater (P<0.05) in ARAnp-obese rats (3,00 ± 0,05 in ♂; 2,60 ± 0,04 in ♀) than in ARAnp (1,16 ± 0,04 in ♂; 1,66 ± 0,03 in ♀); obese (0,94 ± 0,06 in ♂; 1,02 ± 0,02 in ♀) or control (1,00 ± 0,02 in ♂; 1,02 ± 0,023 in ♀) rats. The results of this study suggest that obesity at an early age enhances the hypertension and accelerates the deterioration of renal function that occurs when cardiovascular disease is programmed during the perinatal period. It is also shown that Ang II and oxidative stress seems to play an important role in these AP and renal function changes.


2001 ◽  
Vol 7 (S2) ◽  
pp. 596-597
Author(s):  
E.C. Goldsmith ◽  
J.G. Davis ◽  
X. Yan ◽  
B.H. ᒫorell ◽  
T.K. Borg ◽  
...  

Apoptotic events can be the result of both cell anchorage-dependent and independent mechanisms. The term “anoikis” has been used to describe apoptotic events resulting from a lack of cell-ECM contact (Frisch and Francis, 1994). The integrin heterodimer α5β1 has been implicated in several systems as providing protection against apoptosis. Previous studies have demonstrated that the α5 integrin subunit is present only during cardiac development and conditions of cardiac hypertrophy and is not found in normal adult rat myocytes (Terracio et al., 1991). Cell anchorage-independent apoptosis can result from a variety of factors including biochemical and mechanical stimulus. Angiotensin II (Ang II) has been implicated as a modulator of myocyte apoptosis acting through the angiotensin II type I receptor (Kajstura et al., 1997). The role of a second Ang II receptor, angiotensin II type 2 receptor, has not been determined. The role of apoptosis in myocyte cell death during heart failure remains unclear.


2019 ◽  
Vol 316 (1) ◽  
pp. H186-H200 ◽  
Author(s):  
Ju Youn Beak ◽  
Hong Soon Kang ◽  
Wei Huang ◽  
Page H. Myers ◽  
Dawn E. Bowles ◽  
...  

The nuclear receptor retinoic acid-related orphan receptor-α (RORα) regulates numerous critical biological processes, including central nervous system development, lymphocyte differentiation, and lipid metabolism. RORα has been recently identified in the heart, but very little is known about its role in cardiac physiology. We sought to determine whether RORα regulates myocardial hypertrophy and cardiomyocyte survival in the context of angiotensin II (ANG II) stimulation. For in vivo characterization of the function of RORα in the context of pathological cardiac hypertrophy and heart failure, we used the “staggerer” (RORαsg/sg) mouse, which harbors a germline mutation encoding a truncated and globally nonfunctional RORα. RORαsg/sg and wild-type littermate mice were infused with ANG II or vehicle for 14 days. For in vitro experiments, we overexpressed or silenced RORα in neonatal rat ventricular myocytes (NRVMs) and human cardiac fibroblasts exposed to ANG II. RORαsg/sg mice developed exaggerated myocardial hypertrophy and contractile dysfunction after ANG II treatment. In vitro gain- and loss-of-function experiments were consistent with the discovery that RORα inhibits ANG II-induced pathological hypertrophy and cardiomyocyte death in vivo. RORα directly repressed IL-6 transcription. Loss of RORα function led to enhanced IL-6 expression, proinflammatory STAT3 activation (phopho-STAT3 Tyr705), and decreased mitochondrial number and function, oxidative stress, hypertrophy, and death of cardiomyocytes upon ANG II exposure. RORα was less abundant in failing compared with nonfailing human heart tissue. In conclusion, RORα protects against ANG II-mediated pathological hypertrophy and heart failure by suppressing the IL-6-STAT3 pathway and enhancing mitochondrial function. NEW & NOTEWORTHY Mice lacking retinoic acid-related orphan receptor-α (RORα) develop exaggerated cardiac hypertrophy after angiotensin II infusion. Loss of RORα leads to enhanced IL-6 expression and NF-κB nuclear translocation. RORα maintains mitochondrial function and reduces oxidative stress after angiotensin II. The abundance of RORα is reduced in failing mouse and human hearts.


Sign in / Sign up

Export Citation Format

Share Document