scholarly journals Barriers to and uncertainties in understanding and quantifying global critical mineral and element supply

iScience ◽  
2021 ◽  
pp. 102809
Author(s):  
Brian A. McNulty ◽  
Simon M. Jowitt
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fabiano Bini ◽  
Andrada Pica ◽  
Andrea Marinozzi ◽  
Franco Marinozzi

AbstractBone is a hierarchical biological material, characterized at the nanoscale by a recurring structure mainly composed of apatite mineral and collagen, i.e. the mineralized collagen fibril (MCF). Although the architecture of the MCF was extensively investigated by experimental and computational studies, it still represents a topic of debate. In this work, we developed a 3D continuum model of the mineral phase in the framework of percolation theory, that describes the transition from isolated to spanning cluster of connected platelets. Using Monte Carlo technique, we computed overall 120 × 106 iterations and investigated the formation of spanning networks of apatite minerals. We computed the percolation probability for different mineral volume fractions characteristic of human bone tissue. The findings highlight that the percolation threshold occurs at lower volume fractions for spanning clusters in the width direction with respect to the critical mineral volume fractions that characterize the percolation transition in the thickness and length directions. The formation of spanning clusters of minerals represents a condition of instability for the MCF, as it could be the onset of a high susceptibility to fracture. The 3D computational model developed in this study provides new, complementary insights to the experimental investigations concerning human MCF.


2021 ◽  
Author(s):  
Christopher Creason ◽  
Scott Montross ◽  
Devin Justman ◽  
Mackenzie Mark-Moser ◽  
Randal Thomas ◽  
...  

Author(s):  
Dominika Fila

Rare earth metals are a group of elements widely used in high technology products. They are included in the group of critical mineral resources for the EU economy. Rare earth elements are found in computers and mobile phones, as well as in low-emission energy technologies. They are also applied in chemical processes as catalysts in the oil refining. Some of them occur even in considerable quantities in the earth's crust but not very often in the concentrations justifying the profitability of their extraction. Additionally, the constantly growing demand and the current market situation cause that alternative resources of rare earth elements recovery are sought after. Therefore, the recovery and separation methods as well as recovery from the secondary sources are becoming more and more important. The following paper presents the possibilities of recovery and separation of rare earth elements from primary and secondary sources.


Nutrients ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1202 ◽  
Author(s):  
Jayme Workinger ◽  
Robert. Doyle ◽  
Jonathan Bortz

Magnesium is a critical mineral in the human body and is involved in ~80% of known metabolic functions. It is currently estimated that 60% of adults do not achieve the average dietary intake (ADI) and 45% of Americans are magnesium deficient, a condition associated with disease states like hypertension, diabetes, and neurological disorders, to name a few. Magnesium deficiency can be attributed to common dietary practices, medications, and farming techniques, along with estimates that the mineral content of vegetables has declined by as much as 80–90% in the last 100 years. However, despite this mineral’s importance, it is poorly understood from several standpoints, not the least of which is its unique mechanism of absorption and sensitive compartmental handling in the body, making the determination of magnesium status difficult. The reliance on several popular sample assays has contributed to a great deal of confusion in the literature. This review will discuss causes of magnesium deficiency, absorption, handling, and compartmentalization in the body, highlighting the challenges this creates in determining magnesium status in both clinical and research settings.


Occurrences of granulite facies rocks are widespread in continental regions where they mostly are parts of stable shield areas. Granulite facies terrains are classified as low-, medium- or high-pressure terrains on the basis of critical mineral associations. Special interest is attached to the medium- and highpressure terrains, as they are representative of the deepest crustal levels available for study in any areal extent on the surface, and may give information about the composition of the lower continental crust. Granulite facies terrains are mainly composed of metamorphic and metasomatic rocks, but magmatic rocks with primary igneous textures interpreted as formed by crystallization of magmas under granulite facies conditions are frequent in some areas. Examples of such rocks are anorthosites, gabbros and mangerites. The low-pressure—high-temperature granulite facies rocks are chemically indistinguishable from the amphibolite facies gneisses with which they characteristically occur. It is therefore important to make a distinction between these and the higher pressure types. The medium- to high-pressure granulite facies terrains are characterized by a less ‘acidic’ average major element compositions, and significant depletions in Rb, Cs, Th and U compared with average surface shield compositions. Available data also indicate low initial Sr isotope ratios, even in the gneissic types. In the author’s opinion the important problem associated with granulite facies rocks is not that of their origin, but rather of their importance as constituents of the continental crust, and how they attained their present chemistry.


Sign in / Sign up

Export Citation Format

Share Document