Tension Lap Splice Length of Reinforcing Bars Embedded in Reactive Powder Concrete (RPC)

Structures ◽  
2019 ◽  
Vol 19 ◽  
pp. 362-368 ◽  
Author(s):  
Hussein Al-Quraishi ◽  
Mahdi Al-Farttoosi ◽  
Raad AbdulKhudhur
2019 ◽  
Vol 5 (10) ◽  
pp. 2221-2232
Author(s):  
Hussein Al-Quraishi ◽  
Mahdi Al-Farttoosi ◽  
Raad Abdulkhudhur

Compression splices are widely used in compression members such as columns in multi- story buildings. There are efficient design equations for compression splice of reinforcement embedded in conventional concrete proposed by design codes of practice. However, there is no design equation for compression splice in compression members made of reactive powder concrete (RPC). So, it is required to introduce a design equation to calculate the steel bars lap splice length of RPC compression members. In this study, an experimental work was conducted to investigate the effect of different variables on compression splices strength. These variables were compressive strength of concrete, transverse reinforcement amount, splice length, yield stress of reinforcement and spliced rebar diameter. The experimental results showed that; Increase in the yield stress of reinforcing bars, length of spliced bars and compressive strength of concrete result in increasing in splice strength. Meanwhile, increase in diameter of reinforcing bars result in decreasing in compression splice strength. The increase in the amount of transverse reinforcement has insignificant effect on compression spliced strength of rebar. Finite element analysis was used to analyze the tested specimens and compared between numerical and experimental result was carried out. The numerical and experimental ultimate load and load-deflection behavior is very close to each other. Finite element method was used to investigate a wide range of experimental variables values through a parametric analysis. A new proposing equation for compression splicing of rebar in RPC column is presented in this research.


2020 ◽  
Vol 62 (9) ◽  
pp. 951-956
Author(s):  
Luo Xuguo ◽  
Tan Zheng Long ◽  
Y. Frank Chen

2021 ◽  
Vol 13 (6) ◽  
pp. 3482
Author(s):  
Seoungho Cho ◽  
Myungkwan Lim ◽  
Changhee Lee

High-strength reinforcing bars have high yield strengths. It is possible to reduce the number of reinforcing bars placed in a building. Accordingly, as the amount of reinforcement decreases, the spacing of reinforcing bars increases, workability improves, and the construction period shortens. To evaluate the structural performance of high-strength reinforcing bars and the joint performance of high-strength threaded reinforcing bars, flexural performance tests were performed in this study on 12 beam members with the compressive strength of concrete, the yield strength of the tensile reinforcing bars, and the tensile reinforcing bar ratio as variables. The yield strengths of the tensile reinforcement and joint methods were used as variables, and joint performance tests were performed for six beam members. Based on this study, the foundation for using high-strength reinforcing bars with a design standard yield strength equal to 600 MPa was established. Accordingly, mechanical joints of high-strength threaded reinforcing bars (600 and 670 MPa) can be used. All six specimens were destroyed under more than the expected nominal strength. Lap splice caused brittle fractures because it was not reinforced in stirrup. Increases of 21% to 47% in the loads of specimens using a coupler and a lock nut were observed. Shape yield represents destruction—a section must ensure sufficient ductility after yielding. Therefore, a coupler and lock nut are effective.


2012 ◽  
Vol 568 ◽  
pp. 39-42
Author(s):  
Yu Zhuo Jia ◽  
Li Lin

SAP2000 structural analysis software is used to designed two of 500kV partially prestressed reactive powder concrete pole cross arm; moreover, poles of the two cross arm program have been compared. The results show that the triangular truss cross arm has good mechanical properties, improving the main mate’rial of the stress state, the pole reduced height 10m, by the analysis of the structure shows, this cross arm has higher reliability under the operating conditions, which can be used in 500kV transmission line; from economic and technical performance, the pole cost of this program is greatly reduced, while speeding up the construction progress and improving the comprehensive benefits of the poles in the transmission line.


2013 ◽  
Vol 671-674 ◽  
pp. 1761-1765
Author(s):  
Yong Liu ◽  
Chun Ming Song ◽  
Song Lin Yue

In order to get mechanical properties ,some RPC samples with 5% steel fiber are tested, many groups data were obtained such as compressive strength, shear strength and fracture toughness. And a group of tests on RPC with 5% steel-fiber under penetration were also conducted to validate the performance to impact. The penetration tests are carried out by the semi-AP projectiles with the diameter of 57 mm and earth penetrators with the diameter of 80 mm, and velocities of the two kinds of projectiles are 300~600 m/s and 800~900 m/s, respectively. By contrast between the experimental data and the calculation results of C30 reinforced concrete by using experiential formula under penetration, it shows that the resistance of steel-fiber RPC to penetration is 3 times as that of general C30 reinforced concrete.


Sign in / Sign up

Export Citation Format

Share Document