scholarly journals Duration and intensity of rainfall events with the same erosivity change sediment yield and runoff rates

Author(s):  
Wilk Sampaio de Almeida ◽  
Steffen Seitz ◽  
Luiz Fernando Coutinho de Oliveira ◽  
Daniel Fonseca de Carvalho
2010 ◽  
Vol 90 (4) ◽  
pp. 585-596 ◽  
Author(s):  
S. Pongsai ◽  
D. Schmidt Vogt ◽  
R.P. Shrestha ◽  
R.S. Clemente ◽  
A. Eiumnoh

In this study, model testing, calibration, and validation of the Modified Universal Soil Loss Equation (MUSLE) model were carried out in Khun Satan catchment, Thailand, for the estimation of sediment yield in plots of different slopes using the S factor from the classic Universal Soil Loss Equation (USLE) and the McCool model, as the calibration parameter. In situ experimental plots were established with five different inclinations (9, 16, 25, 30, and 35%), with the other model parameters (e.g., erodibility, conservation practice, etc) being treated as constants. Sediment yields were recorded from 27 rainfall events between July and October 2003. It was found that both the classic USLE and the McCool models over-estimated sediment yields at all slope angles. However, the classic USLE produced a smaller relative error (RE) than the McCool model at plots with slopes of 9 and 16%, while the McCool model performed better at plots with slopes over 16% inclination. The calibration of the model using the S factor was then made for two slope range intervals, and the slope algorithm was later modified. The calibrated S factors were used in the prototype model for slope ranges of 9 to 16% using classic USLE and for slopes from 16 to 35% using the McCool model. The results revealed that an acceptable accuracy can be obtained through model calibration. The model validation based on paired t-test, on the other hand, showed that there was no difference (α = 0.05) between measured and estimated sediment yield using both models. This result indicates that if data on various slope gradients are limited, MUSLE needs to be calibrated before application, especially with respect to topographic factors, in order to obtain an accurate estimate of the sediment yield from individual rainfall events.


2021 ◽  
Author(s):  
Joao Pedro Nunes ◽  
Léonard Bernard-Jannin ◽  
María Luz Rodríguez-Blanco ◽  
Anne-Karine Boulet ◽  
Juliana Marisa Santos ◽  
...  

<p>The extensive afforestation of the Mediterranean rim of Europe in recent decades has increased the number of wildfire disturbances on hydrological and sediment processes, but the impacts on headwater catchments is still poorly understood, especially when compared with the previous agricultural landscape. This work monitored an agroforestry catchment in the north-western Iberian Peninsula, with plantation forests mixed with traditional agriculture using soil conservation practices, for one year before the fire and for three years afterwards, during which period the burnt area was plowed and reforested. During this period, continuous data was collected for meteorology, streamflow and sediment concentration at the outlet, erosion features were mapped and measured after major rainfall events, and channel sediment dynamics were monitored downstream from the agricultural and the burnt forest area. Data from 202 rainfall events with over 10 mm was analysed in detail.</p><p>Results show that the fire led to a notable impact on sediment processes during the first two post-fire years, but not on streamflow processes; this despite the small size of the burnt area (10% of the catchment) and the occurrence of a severe drought in the first year after the fire. During this period, soil loss at the burnt forest slopes was much larger than that at most traditionally managed fields, and, ultimately, led to sediment exhaustion. At the catchment scale, storm characteristics were the dominant factor behind streamflow and sediment yield both before and after the fire. However, the data indicated a shift from detachment-limited sediment yield before the fire, to transport-limited sediment yield afterwards, with important increases in streamflow sediment concentration. This indicates that even small fires can temporarily change sediment processes in agroforestry catchments, with potential negative consequences for downstream water quality.</p>


CATENA ◽  
2019 ◽  
Vol 177 ◽  
pp. 31-40 ◽  
Author(s):  
Yang Zhao ◽  
Wenhong Cao ◽  
Chunhong Hu ◽  
Yousheng Wang ◽  
Zhaoyan Wang ◽  
...  

2013 ◽  
Vol 28 (21) ◽  
pp. 5322-5336 ◽  
Author(s):  
Yu Guo-Qiang ◽  
Zhang Mao-Sheng ◽  
Li Zhan-Bin ◽  
Li Peng ◽  
Zhang Xia ◽  
...  

2018 ◽  
Vol 31 (3) ◽  
pp. 695-703
Author(s):  
JÚLIO CÉSAR NEVES DOS SANTOS ◽  
EUNICE MAIA DE ANDRADE ◽  
HELBA ARAÚJO DE QUEIROZ PALÁCIO ◽  
JOSÉ RIBEIRO DE ARAÚJO NETO ◽  
JACQUES CARVALHO RIBEIRO FILHO

ABSTRACT The adoption of measures to prevent and control erosive processes requires information about the factors affecting the erosion and the sediment transport conditions. However, the sediment yield of a basin depends on the availability of eroded material and the sediment transport capacity. Thus, the objective of this study was to identify the factors that affect the sediment transport capacity at different spatial scales in an area with caatinga vegetation. The study was carried out in the Iguatu Experimental Basin, in the state of Ceará, Brazil, from 2009 to 2014, by monitoring two scale levels: watershed with 2.06 ha, and erosion plot with 20 m². The variables evaluated for the rainfall events were precipitation, intensity of rainfall, antecedent soil moisture, precipitation of the antecedent five days, consecutive dry days, peak flow, runoff depth, and sediment yield. During the study period, 263 rainfall events (>2 mm) and 86 events generating runoff were recorded. Three Principal Components (PC) were developed using the Principal Component Analysis, which explained more than 79% of the total variance. Variables connected to the kinetic energy capacity of the rainfall to disaggregate soil particles, the energy for sediment transport, and the soil water content were framed in the CP1, CP2, and CP3, respectively. In the evaluated scales, the sediment yield presented a high correlation with the runoff depth, which indicates limiting conditions for sediment yield by the mass flow energy.


Geomorphology ◽  
2022 ◽  
pp. 108107
Author(s):  
Hernán Alcayaga ◽  
Marco Soto-Alvarez ◽  
Jonathan B. Laronne ◽  
Diego Caamaño ◽  
Luca Mao ◽  
...  

2020 ◽  
Author(s):  
Franciele de Bastos ◽  
José Miguel Reichert ◽  
Éderson Diniz Ebling ◽  
Stephan Hörbinger

<p>In the last years, the intensification of erosive processes from inappropriate land use and management have made sediment production a worldwide problem, compromising soil physical and chemical quality, and water quality and quantity. This source of pollution can be reduced by understanding hydrological processes. Catchment scale monitoring allows the identification of the effects of anthropogenic actions on these processes, enabling assertive decision-making to reduce erosion processes. Modeling tools have been widely used in environmental studies, helping to understand the processes and providing the prediction of future scenarios. However, the development and use of models capable of simulate hydrossedimentological flows in forest areas are still incipient. The goal of this study was to represent the behavior and to understand the dynamics of hydrological and sedimentological processes by monitoring and modeling with the Limburg Soil Erosion Model (LISEM) two small paired rural watersheds. The study was conducted in two paired watersheds, with land use based in eucalyptus plantation (EW, 0.83 km²) and grassland (GW, 1.10 km²), both located in the Pampa biome, in the state of Rio Grande do Sul, Brazil. The hydrosedimentometric monitoring was conducted from January to March 2019, in fluviometric monitoring sections composed of flumes and equipped with level, precipitation, and turbidity sensors to quantify flow, rainfall, and concentration of suspended sediments, respectively. Three events of similar magnitude, with total rainfall accumulation of approximately 30 mm, were simulated for the two catchments studied. The modeling was applied to the scale of individual events. The results were evaluated by surface runoff, peak flow time, and total sediment production, observed and simulated. The percentage trend (PBIAS) was used to evaluate the percentage of overestimation or underestimation of the simulated data in relation to the measured ones. To evaluate the simulated hydrograph shapes and total sediment yield, the Nash and Sutcliffe Efficiency Coefficient (NSE) was used. LISEM satisfactorily represented the runoff in rainfall events of different intensities for both basins, supported by the Nash and Sutcliffe coefficients (> 0.50) and PBIAS or ERROR (< 25% for runoff and < 55% for the production of sediments). The model was unable to represent sediment production satisfactorily (< 0.50). This may be associated with spatial variability of the soil and the characteristics of the model used, which simulates the surface flow promoted by individual rainfall events in watersheds. In the study area, the influence of forest cover associated with sandy soil with deep clay accumulation favors the subsurface erosive process. FW had lower total sediment yield and lower peak flows, which is associated with the vegetation type. With the incidence of rain in the forest compartment, part of it is compartmentalized upon reaching the forest canopy, part seeps through the trunk, reaching the litter at a lower speed, favoring infiltration and decreasing surface runoff. Our studies are in the early stages, continued monitoring is necessary to evaluate events of different magnitudes, and to identify a model capable of adequately representing the predominant subsurface runoff in forest areas.</p>


Sign in / Sign up

Export Citation Format

Share Document