Synthesis of Mn3O4 nanoparticles via chemical precipitation approach for supercapacitor application

2015 ◽  
Vol 636 ◽  
pp. 234-240 ◽  
Author(s):  
Balasubramaniam Gnana Sundara Raj ◽  
Abdullah M. Asiri ◽  
Jerry J. Wu ◽  
Sambandam Anandan
2013 ◽  
Vol 235 ◽  
pp. 76-81 ◽  
Author(s):  
Lu Wang ◽  
Lin Chen ◽  
Yuhong Li ◽  
Hongmei Ji ◽  
Gang Yang

Fe2O3 /CeO2 nanocomposite was synthesized by a chemical precipitation method in room temperature. The prepared nanocomposite has been subjected to some characterization techniques such as XRD, SEM, FTIR, CV, etc., The presence of crystalline phases of CeO2 and Fe2O3 were confirmed by the powder X–Ray diffraction analysis. Surface morphology of the prepared nanocomposite has been analyzed using SEM analysis. The functional group vibrations were analyzed by FTIR technique. The maximum specific capacitance achieved by using 1M KOH electrolyte solution is about 242 Fg-1 at 5 Ag-1 current density.


2018 ◽  
Vol 69 (8) ◽  
pp. 1944-1948 ◽  
Author(s):  
Adina Turcu Stiolica ◽  
Maria Viorica Bubulica ◽  
Oana Elena Nicolaescu ◽  
Octavian Croitoru ◽  
Mariana Popescu ◽  
...  

A design of experiment (DoE) approach is presented for the optimization of Alendronate-hydroxyapatite nanoparticles� synthesis. The synthesis was performed using the chemical precipitation technique from calcium nitrate, diammonium hydrogen phosphate and alendronate. Synthesis temperature, reactant addition rate and ripening time were chosen as the most relevant experimental factors for our synthesis. Design of Experiments was used in order to measure these conclusive process parameters and their effect on controlling some final nanoparticles parameters, such us: alendronate incorporation efficiency (IncorporationEfficiency, %), hydroxyapatite crystallite size (Size_XRD, nm), hydroxyapatite particle size distribution (Size_DLS, �). Our study found that better HA-AL incorporation efficiency and small nonoparticles can be obtained using the following chemical process parameters: reaction temperature 30oC or smaller, ripening time 108h and addition rate 0.1mol/min. The analysis of more than one nanoparticles characteristics was possible using DoE software, MODDE 9.1. Thus, hydroxyapatite-alendronate incorporation efficiency should be expected to increase with decreasing temperature below 300C, increasing the maturate time at least 108h, at an addition rate of 0.1mol/min, in an N2 atmosphere. The same conditions will ensure nanoparticles small size that would be more desirable for the application of implants.


1973 ◽  
Vol 8 (1) ◽  
pp. 91-109 ◽  
Author(s):  
M.E. Jack ◽  
G.J. Farquhar ◽  
G.M. Cornwall

Abstract The importance of phosphorus as a nutrient in the eutrophication of lakes and rivers has been well established (Fruh 1967). It has been shown in addition that a significant amount of this phosphorus arises from the discharge of treated and untreated municipal wastewater (Task Group Report 1967). Consequently, measures are being taken, notably in the Province of Ontario, for removal of phosphorus from wastewater by means of chemical precipitation. Chemicals exhibiting satisfactory phosphorus removal include lime, iron compounds and aluminum compounds (Leckie and Stumm 1970; Schmid 1968; Wuhrman 1968).


1990 ◽  
Vol 22 (7-8) ◽  
pp. 85-92 ◽  
Author(s):  
Ingemar Karlsson ◽  
Gunnar Smith

Chemically coagulated sewage water gives an effluent low in both suspended matter and organics. To use chemical precipitation as the first step in waste water treatment improves nitrification in the following biological stage. The precipitated sludge contains 75% of the organic matter in the sewage and can by hydrolysis be converted to readily degradable organic matter, which presents a valuable carbon source for the denitrification process. This paper will review experiences from full-scale applications as well as pilot-plant and laboratory studies.


1991 ◽  
Vol 24 (7) ◽  
pp. 133-148 ◽  
Author(s):  
A. Peter ◽  
F. Sarfert

In investigations concerning sludge bulking in Berlin enhanced biological phosphorus removal was first observed unexpectedly. Because since 1986 an officially preset limit of 2 mg TP/l must be kept in all Berlin wastewater discharges it was decided to explore the capabilities of the observed mechanism under the specific circumstances of the exciting two large treatment plants in Ruhleben (240,000 m3/d) and Marienfelde (100,000 m3/d). For this purpose some of the existing units at both plants were equipped with anaerobic zones which were generated mainly by process modifications. Additionally stage one of the Ruhleben plant was altered completely in order to investigate the combination of biological phosphorus and nitrogen removal as a special pilot study in three parallel trains. The research activities and treatment results gained in each of the two stages of the Ruhleben and in the Marienfelde plant are reported in detail. For example BOD-related phosphorus removal rates were obtained ranging from 2.3-4.5 mg TP per 100 mg BOD removed. It must be stressed that all examinations were performed on full-scale conditions. At present the given limit of 2 mg TP/l in the Ruhleben plant is met without any chemical precipitation at least on average. From the beginning biological phosphorus removal will be integrated into further projected extensions.


1991 ◽  
Vol 24 (7) ◽  
pp. 103-111 ◽  
Author(s):  
G. Brattberg ◽  
L.-G. Reinius ◽  
M. Tendaj

Stockholm was founded at the point where the waters of Lake Mälaren emerge into the Baltic Sea. Lake Mälaren is the water source of the water works of Stockholm. The Lake also receives water from one of the sewage treatment plants. The outlet from the two other sewage treatment plants are in the inner part of the archipelago. During 1968-73 the treatment was improved, after which the phosphorus load to the receiving water significantly decreased. The total P concentration in the surface water has decreased since 1970 and phosphorus has replaced nitrogen as the most limiting nutrient throughout the entire archipelago within 50 km from Stockholm. To further reduce the eutrophication a continued reduction of the phosphorus load is most effective. For the Baltic proper as a whole, where primary nitrogen limitation is present, it is important to reduce the supply of nitrogen to the greatest possible extent. The treatment plants in Stockholm are located in subsurface rock-chambers. The treatment includes mechanical, biological and chemical treatment. In the mechanical stage the sewage is treated in screens, grit chambers and primary sedimentation. The biological stage is a conventional activated sludgeprocess. For the chemical precipitation ferroussulphateis added before the screens. The sludge is stabilized in anaerobic digesters and dewatered in centrifuges before disposal on farmland. To meet more stringent requirements on nitrification and nitrogen removal several projects are going on to optimize the nutrient removal. The aim of these investigations is to improve the plants' performance within the existing plant.


Sign in / Sign up

Export Citation Format

Share Document