scholarly journals Synthesis and Electrochemical Examination of Fe2O3/CeO2 Nanocomposite for Supercapacitor Application

Fe2O3 /CeO2 nanocomposite was synthesized by a chemical precipitation method in room temperature. The prepared nanocomposite has been subjected to some characterization techniques such as XRD, SEM, FTIR, CV, etc., The presence of crystalline phases of CeO2 and Fe2O3 were confirmed by the powder X–Ray diffraction analysis. Surface morphology of the prepared nanocomposite has been analyzed using SEM analysis. The functional group vibrations were analyzed by FTIR technique. The maximum specific capacitance achieved by using 1M KOH electrolyte solution is about 242 Fg-1 at 5 Ag-1 current density.

2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Gowthami R ◽  
Nivetha K P

In this present study the non toxic CuS nanoparticles was synthesized by the reaction of copper acetate, thiourea along with the precipitating agent NaoH under chemical precipitation method. The final product CuS nanomaterial was dried at room temperature for better growth of nanoparticles. The size and growth of the crystal depends on the temperature also on the addition of reagent. The resultant nanocrystal were characterized using various techniques like X ray diffraction reveals the particle size, Scanning electron microscope determines the morphology of crystal, Energy dispersive X ray spectroscopy investigate the elemental composition of nanoparticles, U-Visible spectroscopy examine the presence of metallic ion, Fourier transform infrared spectroscopy inspect the existence of functional group. The antibacterial activity of hexagonal structured copper sulphide nanomaterials against gram positive and gramnegative bacteria were also analyzed for their wide applications.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 250 ◽  
Author(s):  
Francesco Baldassarre ◽  
Angela Altomare ◽  
Nicola Corriero ◽  
Ernesto Mesto ◽  
Maria Lacalamita ◽  
...  

Europium-doped hydroxyapatite Ca10(PO4)6(OH)2 (3% mol) powders were synthesized by an optimized chemical precipitation method at 25 °C, followed by drying at 120 °C and calcination at 450 °C and 900 °C. The obtained nanosized crystallite samples were investigated by means of a combination of inductively coupled plasma (ICP) spectroscopy, powder X-ray diffraction (PXRD), Fourier Transform Infrared (FTIR), Raman and photoluminescence (PL) spectroscopies. The Rietveld refinement in the hexagonal P63/m space group showed europium ordered at the Ca2 site at high temperature (900 °C), and at the Ca1 site for lower temperatures (120 °C and 450 °C). FTIR and Raman spectra showed slight band shifts and minor modifications of the (PO4) bands with increasing annealing temperature. PL spectra and decay curves revealed significant luminescence emission for the phase obtained at 900 °C and highlighted the migration of Eu from the Ca1 to Ca2 site as a result of increasing calcinating temperature.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Kexin Fang ◽  
Lei Shi ◽  
Lishuang Cui ◽  
Chunwei Shi ◽  
Weiwei Si

A series of CoFe2O4/Bi12O17Cl2 (CFO/Bi12O17Cl2) nanocomposites have been prepared by chemical precipitation method. The result of X-ray diffraction showed that CFO/Bi12O17Cl2 composites had high crystallinity. It was found that CoFe2O4...


2011 ◽  
Vol 306-307 ◽  
pp. 410-415
Author(s):  
Li Sun ◽  
Fu Tian Liu ◽  
Qi Hui Jiang ◽  
Xiu Xiu Chen ◽  
Ping Yang

Core/shell type nanoparticles with an average diameter of 20nm were synthesized by chemical precipitation method. Firstly, Monodisperse Fe3O4 nanoparticles were synthesized by solvethermal method. FeSO4ž7H2O and NaBH4 were respectively dissolved in distilled water, then moderated Fe3O4 particles and surfactant(PVP) were ultrasonic dispersed into the FeSO4ž7H2O solution. The resulting solution was stirred 2 h at room temperature. Fe could be deposited on the surface of monodispersed Fe3O4 nanoparticles to form core-shell particles. The particles were characterized by using various experimental techniques, such as transmission electron microscopy (TEM), X-ray diffraction (XRD), AGM and DTA. The results suggest that the saturation magnetization of the nanocomposites is 100 emu/g. The composition of the samples show monodisperse and the sides of the core/shell nanoparticles are 20-30nm. It is noted that the formation of Fe3O4/Fe nanocomposites magnetite nanoparticles possess superparamagnetic property.


2019 ◽  
Vol 807 ◽  
pp. 50-56
Author(s):  
Yun Long Zhou ◽  
Zhi Biao Hu ◽  
Li Mei Wu ◽  
Jiao Hao Wu

Using hydrated manganese sulfate and general type graphene (GR) as raw materials, Mn3O4/GR composite has been successfully prepared by the liquid phase chemical co-precipitation method at room temperature. X-ray diffraction (XRD) was used to investigate the phase structure of Mn3O4powder and Mn3O4/GR composite; The electrochemical performances of the samples were elucidated by cyclic voltammetry and galvanostatic charge-discharge test in 0.5 mol/L Na2SO4electrolyte. The results show that the Mn3O4/GR composite possesses graphene phase and good reversibility; the composite also displays a specific capacitance of 318.8 F/g at a current density of 1 A/g.


2019 ◽  
Vol 969 ◽  
pp. 169-174
Author(s):  
R. Sivanand ◽  
S. Chellammal ◽  
S. Manivannan

In this paper, the effect of size variation of cadmium sulphide nanocrystallites which have been prepared by precipitation method is analyzed. These prepared samples were studied using X-ray diffraction (XRD), Scanning electron microscopy (SEM), and Energy dispersive analysis of spectroscopy (EDAX) techniques. SEM analysis represents the morphological nature of prepared samples and EDAX indicates the confirmation of elements present in the sample. XRD analysis determines the size of the samples and identifies the structure using miller indices (h k l values) of the nanocrystallies matches with JCPDS. From the XRD analysis, the size variation which depends on dopant, capping agent are discussed and corresponding results are reported in this paper.


2009 ◽  
Vol 79-82 ◽  
pp. 1643-1646 ◽  
Author(s):  
Qing Lin ◽  
Yan Bao Li ◽  
Xiang Hui Lan ◽  
Chun Hua Lu ◽  
Zhong Zi Xu

The amorphous calcium phosphate (ACP)/tricalcium silicate (Ca3SiO5, C3S) composite powders were synthesized in this paper. The exothermal behavior of C3S determined by isothermal conduction calorimetry indicated that the ACP could be synthesis by chemical precipitation method during the induction period (stage II) of C3S. The composite powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results indicated that nanosized ACP particles deposited on the surface of C3S particles to form core-shell structure at pH=10.5, and the nCa/nP of ACP could be controlled between 1.0 and 1.5. The core-shell structure is stable after sintered at 500 oC for 3 h to remove the β-cyclodextrin (β-CD). As compared with the irregular C3S particles (1~5 μm), the composite powders particles are spherical with a diameter of 40~150 μm. Therefore, to obtain the smaller size of composite powders, it is expected to avoid the aggregate of C3S particles in the aqueous solution by addition of dispersant. As compared with C3S, the composite powders may contribute better injectability, strength and biocompatibility.


2018 ◽  
Vol 915 ◽  
pp. 98-103 ◽  
Author(s):  
Duygu Candemir ◽  
Filiz Boran

In this study, copper oxide (CuO) nanostructures were successfully prepared by adding EG (ethylene glycol) and PEG (4000, 8000) (polyethylene glycol) via an in-situ chemical precipitation method. EG and PEG (4000, 8000) were effective for changing the particular size of CuO and we examined the effects of drying type such as freeze drying, muffle and horizontal furnace on the size of CuO nanostructure. The structure, morphology and elemental analysis of CuO nanostructure were analyzed by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS). Also, the CuO nanostructures showed excellent electrical conductivity by the changing of PEG’s molecular weight and drying processes.


2011 ◽  
Vol 308-310 ◽  
pp. 2180-2186
Author(s):  
Hui Yang ◽  
Fei Fei Huang ◽  
Ke Wei Xu

In order to find a simple way to prepare oriental HA, only by controlling the preparation conditions, a co-precipitation method was used to prepare an oriented HA. The influences of temperature and aging on its directional growth were investigated kinetically and thermodynamically. The chemical composition was characterized by X-Ray diffraction and Fourier transform infrared. The morphologies were observed by scanning electron microscopy (SEM). The oriented parameters of HA (c/a) were calculated by Scherrer equation. The results show that the temperature rise in the process of synthesis, aging or calcining inhibited the growth of HA crystal in the direction of c-axis. Aging for 24 h benefited the growth along c-axis, whereas aging for 36 h was in favor of the decreasing of the c/a value. The supernatant-replacement during aging exerted the same effect on the growth with the rising of temperature. The SEM analysis result shows that the morphology of the produced HA particles looked like a uniform needle shape and had a good dispersion.


2011 ◽  
Vol 236-238 ◽  
pp. 724-727
Author(s):  
Feng Li ◽  
Hua Song ◽  
Hua Yang Zhang

A series of Al2O3-ZrO2 (AZ-X) composite oxides with different ZrO2 contents were prepared by a chemical precipitation method. Ni-P/AZ-X catalysts were prepared by temperature-programmed reduction. The supports and catalysts were extensively characterized by X-ray diffraction (XRD) and BET. The effects of support composition and P/Ni molar ratios on the catalytic performance of the catalysts were investigated by thiophene hydrodesulfurization (HDS) and pyridine hydrodenitrogenation (HDN). In comparison with Al2O3, Al2O3-ZrO2 (20 wt% ZrO2) composite oxide supported Ni-P catalyst exhibited higher activity and the activities of HDS and HDN increased by 7.5 % and 11.1 %, respectively. Studies of Ni-P/AZ-X catalysts with varying initial P/Ni molar ratios indicated that oxidic precursors with molar ratios of P/Ni = 2/1 yielded catalyst containing phase-pure Ni2P which exhibited optimal activity.


Sign in / Sign up

Export Citation Format

Share Document