Synthesis of a three-dimensional network-structured scaffold built of silica nanotubes for potential bone tissue engineering applications

2015 ◽  
Vol 647 ◽  
pp. 711-719 ◽  
Author(s):  
Yizao Wan ◽  
Ping Liu ◽  
Chen Zhang ◽  
Zhiwei Yang ◽  
Guangyao Xiong ◽  
...  
2014 ◽  
Vol 2 (38) ◽  
pp. 6611-6618 ◽  
Author(s):  
Jun Yang ◽  
Teng Long ◽  
Nan-Fei He ◽  
Ya-Ping Guo ◽  
Zhen-An Zhu ◽  
...  

A chitosan/bioglass three-dimensional porous scaffold with excellent biocompatibility and mechanical properties has been developed for the treatment of bone defects.


2011 ◽  
Vol 7 (5) ◽  
pp. 1999-2006 ◽  
Author(s):  
Hajar Seyednejad ◽  
Debby Gawlitta ◽  
Wouter J.A. Dhert ◽  
Cornelus F. van Nostrum ◽  
Tina Vermonden ◽  
...  

2018 ◽  
Vol 1 (3) ◽  
pp. 25-93 ◽  
Author(s):  
Sergey V. Dorozhkin

The chemical and structural similarities of calcium orthophosphates (abbreviated as CaPO4)to the mineral composition of natural bones and teeth have made them a good candidate for bone tissue engineering applications. Nowadays, a variety of natural or synthetic CaPO4-based biomaterials is produced and has been extensively used for dental and orthopedic applications. Despite their inherent brittleness, CaPO4 materials possess several appealing characteristics as scaffold materials. Namely, their biocompatibility and variable stoichiometry, thus surface charge density, functionality and dissolution properties, make them suitable for both drug and growth factor delivery. Therefore, CaPO4, especially hydroxyapatite (HA) and tricalcium phosphates (TCPs), have attracted a significant interest in simultaneous use as bone grafts and drug delivery vehicles. Namely, CaPO4-based three-dimensional (3D) scaffolds and/or carriers have been designed to induce bone formation and vascularization. These scaffolds are usually porous and harbor various types of drugs, biologically active molecules and/or cells. Over the past few decades, their application as bone grafts in combination with stem cells has gained much importance. This review discusses the source, manufacturing methods and advantages of using CaPO4 scaffolds for bone tissue engineering applications. Perspective future applications comprise drug delivery and tissue engineering purposes.


Author(s):  
Eamon J. Sheehy ◽  
Tatiana Vinardell ◽  
Conor T. Buckley ◽  
Daniel J. Kelly

Tissue engineering applications aim to replace or regenerate damaged tissues through a combination of cells, three-dimensional scaffolds, and signaling molecules [1]. The endochondral approach to bone tissue engineering [2], which involves remodeling of an intermittent hypertrophic cartilaginous template, may be superior to the traditional intramembranous approach. Naturally derived hydrogels have been used extensively in tissue engineering applications [3]. Mesenchymal stem cell (MSC) seeded hydrogels may be a particularly powerful tool in scaling-up engineered endochondral bone grafts as the low oxygen conditions that develop within large constructs enhance in vitro chondrogenic differentiation and functional development [4]. A key requirement however, is that the hydrogel must allow for remodeling of the engineered hypertrophic cartilage into bone and also facilitate vascularization of the graft. The first objective of this study was to compare the capacity of different naturally derived hydrogels (alginate, chitosan, and fibrin) to generate in vivo endochondral bone. The secondary objective was to investigate the possibility of engineering a ‘scaled-up’ anatomically accurate distal phalange as a paradigm for whole bone tissue engineering.


2018 ◽  
Vol 782 ◽  
pp. 98-102
Author(s):  
Shota Watanabe ◽  
Fukue Nagata ◽  
Tatsuya Miyajima ◽  
Makoto Sakurai ◽  
Aoi Suzuki ◽  
...  

Natural bone is a complex material with well-designed architecture. To achieve successful bone integration and regeneration, the constituent and structure of bone-repairing scaffolds need to be flexible and biocompatible. HAp, as the main composition of bone minerals, has excellent biocompatibility, while CMC comprised of a three-dimensional network were high flexibility. Therefore, CMC/HAp composite have been attracted attention due to the development of bone tissue engineering. In this work, carboxymethyl cellulose (CMC)/hydroxyapatite (Ca10(PO4)6(OH)2; HAp) composite have been developed as three-dimensional scaffold for bone tissue engineering. Scanning electron microscopy revealed that the CMC/HAp composite have sheet-like structure. The amount of precipitated HAp of CMC/HAp composite was investigated using Thermogravimetric analysis. The amount of precipitated HAp in products prepared with 100 mg CMC was 49.8 wt%, while the amount of precipitated HAp in products prepared with 1000 mg CMC was 22.3 wt%. These results revealed that the amount of precipitated HAp in CMC/HAp composite was affected by CMC amount as prepared.


2016 ◽  
Vol 19 (2) ◽  
pp. 93-100
Author(s):  
Lalita El Milla

Scaffolds is three dimensional structure that serves as a framework for bone growth. Natural materials are often used in synthesis of bone tissue engineering scaffolds with respect to compliance with the content of the human body. Among the materials used to make scafffold was hydroxyapatite, alginate and chitosan. Hydroxyapatite powder obtained by mixing phosphoric acid and calcium hydroxide, alginate powders extracted from brown algae and chitosan powder acetylated from crab. The purpose of this study was to examine the functional groups of hydroxyapatite, alginate and chitosan. The method used in this study was laboratory experimental using Fourier Transform Infrared (FTIR) spectroscopy for hydroxyapatite, alginate and chitosan powders. The results indicated the presence of functional groups PO43-, O-H and CO32- in hydroxyapatite. In alginate there were O-H, C=O, COOH and C-O-C functional groups, whereas in chitosan there were O-H, N-H, C=O, C-N, and C-O-C. It was concluded that the third material containing functional groups as found in humans that correspond to the scaffolds material in bone tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document