Face-centered-cubic titanium - A new crystal structure of Ti in a Ti-8Mo-6Fe alloy

2018 ◽  
Vol 748 ◽  
pp. 943-952 ◽  
Author(s):  
G. Han ◽  
X. Lu ◽  
Q. Xia ◽  
B. Lei ◽  
Y. Yan ◽  
...  
2012 ◽  
Vol 476-478 ◽  
pp. 1138-1141
Author(s):  
Zhi Qiang Wei ◽  
Qiang Wei ◽  
Li Gang Liu ◽  
Hua Yang ◽  
Xiao Juan Wu

Ag nanoparticles were successfully synthesized by hydrothermal method under the polyol system combined with traces of sodium chloride, Silver nitrate(AgNO3) and polyvinylpyrrolidone (PVP) acted as the silver source and dispersant respectively. The samples by this process were characterized via X-ray powder diffraction (XRD), Brunauer–Emmett–Teller (BET) adsorption equation, transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED) to determine the chemical composition, particle size, crystal structure and morphology. The experiment results indicate that the crystal structure of the samples is face centered cubic (FCC) structure as same as the bulk materials, The specific surface area is 24 m2/g, the particle size distribution ranging from10 to 50 nm, with an average particle size about 26 nm obtained by TEM and confirmed by XRD and BET results.


2020 ◽  
Vol 1009 ◽  
pp. 69-74
Author(s):  
Ekaterina Borisovna Markova ◽  
Alexander Genrihovich Cherednichenko ◽  
V.V. Kurilkin ◽  
J.M. Serov

The influence of the type of crystal structure of complex gadolinium oxides on their catalytic activity was studied using a wide range of physicochemical methods. It was shown that the synthesized nanocrystalline powders Gd2Zr2O7 form highly symmetric face-centered cubic crystal structures. In the course of catalytic experiments, it was found that the formation of a cubic structure increases the degree of conversion of propane and the shift of cracking temperatures to a lower area. The formation of various defects contributes to the course of the dehydrogenation or degradation reaction due to the different number of catalytic centers.


2008 ◽  
Vol 8 (11) ◽  
pp. 5942-5951 ◽  
Author(s):  
Theodoros Tsoufis ◽  
Aphrodite Tomou ◽  
Dimitrios Gournis ◽  
Alexios P. Douvalis ◽  
Ioannis Panagiotopoulos ◽  
...  

Multiwalled carbon nanotubes (MWCNTs) were used as nanotemplates for the dispersion and stabilization of FePt nanoparticles (NPs). Pre-formed capped FePt NPs were connected to the MWCNTs external surface via covalent binding through organic linkers. Free FePt NPs and MWCNTs-FePt hybrids were annealed in vacuum at 700 °C in order to achieve the L10 ordering of the FePt phase. Both as prepared and annealed samples were characterized and studied using a combination of experimental techniques, such as Raman and Mössbauer spectroscopies, powder X-ray Diffraction (XRD), magnetization and transmittion electron microscopy (TEM) measurements. TEM measurements of the hybrid sample before annealing show that a fine dispersion of NPs along the MWCNTs surface is achieved, while a certain amount of free particles attached to each other in well connected dense assemblies of periodical or non-periodical particle arrangements is also observed. XRD measurements reveal that the FePt phase has the face-centered cubic (fcc) disordered crystal structure in the as prepared samples, which is transformed to the face-centered tetragonal (fct) L10 ordered crystal structure after annealing. An increase in the average particle size is observed after annealing, which is higher for the free NPs sample. Superparamagnetic phenomena due to the small FePt particle size are observed in the Mössbauer spectra of the as prepared samples. Mössbauer and magnetization measurements of the MWCNTs-FePt hybrids sample reveal that the part of the FePt particles attached to the MWCNTs surface shows superparamagnetic phenomena at RT even after the annealing process. The hard magnetic L10 phase characteristics are evident in the magnetization measurements of both samples after annealing, with the coercivity of the hybrid sample over-scaling that of the free NPs sample by a factor of 1.25.


2013 ◽  
Vol 749 ◽  
pp. 192-197
Author(s):  
Xue Min Huang ◽  
Quan Sheng Wang ◽  
Ying Liu ◽  
Xiu Chen Zhao ◽  
Shu Lai Wen

The two kinds of flower-like ultrafine cobalt particles were prepared by reducing cobalt chloride (CoCl2·6H2O) with hydrazine hydrate (N2H4·H2O) under ultrasonic and microwave radiation, in which ethanol-water or ethylene glycol-water mixture was used as solvent. The morphology, crystal structure and magnetic properties of the as-prepared particles were characterized by scanning electron microscope (SEM), x-ray diffraction pattern (XRD) and vibrating sample magnetometer (VSM). The results show that the petals of the flower-like cobalt particles prepared in the ethanol-water system were dendritic, while the petals of the flower-like cobalt particles prepared in the ethylene glycol-water system were sword-like. The crystal structure of cobalt particles prepared in the two kinds of systems both consisted of hexagonal close-packed cubic phase and face-centered cubic phase, but the relative content was different. The saturation magnetization of the cobalt particles with dendritic petals and the cobalt particles with sword-like petals was the same approximately, but their coercivity was greatly different (the difference in value about 7184.14Am-1), which might be attributed to the magnetocrystalline anisotropy and shape anisotropy.


1993 ◽  
Vol 49 (6) ◽  
pp. 846-853 ◽  
Author(s):  
K. Suzuki

The crystal structure of precipitates in a mixed crystal of NaF and 1 mol% AlF3 has been studied at room temperature using both stationary-crystal and rotating-crystal X-ray photographic methods. It has been found that almost all the reflections can be assigned to a face-centered-cubic (f.c.c.) lattice with unit-cell parameter 7.77 Å. The main feature of the diffraction pattern is that the 311 reflection is very strong while the 222 reflection is practically zero, in contrast to the case of high-form cryolite, i.e. cubic Na3AlF6. These features are explained by assuming an f.c.c. arrangement of AlF6 octahedra that are rotated around the 〈111〉 axes by about 47° from the highest-symmetry orientation. It has also been shown that the F ions in each octahedron make large overlaps with the Al ion at the center of the octahedron. A random distribution of rotation axes is also proposed to conform to the cubic symmetry of the lattice structure of the precipitate.


1992 ◽  
Vol 7 (2) ◽  
pp. 99-102 ◽  
Author(s):  
N.R. Serebryanaya

AbstractPhase transitions were found with use of an in situX-ray anvil-type of apparatus with a boron annulus at pressures up to 12 GPa. The disordering of vacancies in the In sub-structure, or α→βtransition, was found in In2Te3at p > 1.9 GPa. The next transformation from the β-form into the Bi2Te3type of structure was observed in both sesquitellurides at 2.0 GPa and 5.0 GPa for In2TGe3and Ga2Te3respectively. The In2Te3metastable phase of the Bi2Te3resulted from heating up to 200° C at p > 4.0 GPa, and it remained in a normal condition on release of the pressure. The X-ray powder diffraction data of pressure-induced phases, volume changes and bulk modulus of both sesquitellurides are given. The compressibility anisotropy of the layer pressure-induced phase was observed. The mechanism of the crystal structure transformation from the face-centered cubic structure into the Bi2Te3type is proposed to be due to the displacement of atoms from the space diagonal of the cube [111] into [112]-cubic direction and the rhombohedral distortion of the angle between these directions.


1993 ◽  
Vol 313 ◽  
Author(s):  
Bruce M. Lairson ◽  
Mark R. Visokay ◽  
Robert Sinclair ◽  
Bruce M. Clemens

ABSTRACTWe report on the magnetic and Magneto-optical properties of PtFe and PtCo intermetallic thin films when they have the CuAu(I) tetragonal structure and their crystallographic C axis is oriented out of the film plane. These films possess large perpendicular magnetic anisotropy energies. We observe changes in the Magneto-optic Kerr rotations of Pt-Fe and Pt-Co alloys associated with the formation of the uniaxial CuAu(I) crystal structure. In particular, we report the observation of up to 60% enhancement in the Magneto-optic Ken-rotation for ordered, epitaxial PtFe intermetallic alloy over that of the random face centered cubic alloy. This enhancement is wavelength dependent, with a peak in the visible light range at 2.0 eV.


1961 ◽  
Vol 39 (2) ◽  
pp. 297-317 ◽  
Author(s):  
Osvald Knop ◽  
Mohammad Anwar Ibrahim

The face-centered cubic phase π(Fe,Co,Ni,S) has been shown to exist, at room temperature, within wide composition limits in or close to the M9S8 section of the quaternary system Fe–Co–Ni–S. The M:S ratio of the binary phase π (Co,S) is 9:8 with very narrow homogeneity ranges on both sides of Co9S8, but in π (Fe,Co,Ni,S) the ratio is somewhat higher and appears to increase with decreasing cobalt content. Stoichiometric Co9S8 probably contains a small number of vacancies in both sublattices. It is quite lilcely that the sulphur sublattice is nearly fully occupied and that departures from stoichiometry are caused by the varying degree of occupancy of the metal sublattice.The crystal structure, which was proposed for Co9S8 and for the mineral pentlandite by Lindqvist etal., has been confirmed for these two substances and for π (Fe,Co,Ni,S) in general by X-ray and neutron powder diffraction. The present evidence does not support the crystal structure suggested for natural pentlandite by Eliseev; Eliseev's model does not, in fact, account for the diffraction data of any of the substances examined in this work.Replacement of cobalt in π (Co,S) by iron or nickel or both results in an expansion of the unit cell, the maximum increase in a(π) amounting to about 3%. Cobalt in π (Co,S) cannot be replaced completely by iron or by nickel in samples prepared by dry synthesis, but if the substitution is simultaneous, the π structure will be preserved over a considerable range of compositions even on total replacement. The stability limits of π (Fe,Ni,S) have been found somewhat wider than those stated by Lundqvist.In π phases with the compositions Co8MS8 the metal atoms can conceivably be present in ordered sublattices. This possibility was explored by neutron diffraction in slowly cooled Co8NiS8. Unlike in spinels, where nickel shows a strong preference for octahedral co-ordination, the cobalt and nickel atoms were found to be distributed at random.


1990 ◽  
Vol 206 ◽  
Author(s):  
R. M. Fleming ◽  
T. Siegrist ◽  
P. M. Marsh ◽  
B. Hessen ◽  
A. R. Kortan ◽  
...  

ABSTRACTWe have grown crystals of the carbon structure C60 by sublimation. In contrast to solution-grown crystals, the sublimed crystals have long range order with no evidence of solvent inclusions. Sublimed C60 forms three dimensional, faceted crystals with a close-packed, face-centered cubic unit cell. We have refined a crystal structure using the “soccer ball” model of the C60 molecule. The results indicate that the C60 molecule has the expected spherical shape, however the data are not sufficiently accurate to unambiguously determine atomic positions.


Open Physics ◽  
2010 ◽  
Vol 8 (1) ◽  
Author(s):  
Vladimir Kulbachinskii ◽  
Boris Bulychev ◽  
Vladimir Kytin ◽  
Alexey Krechetov ◽  
Valeriy Tarasov ◽  
...  

AbstractSodium fullerides NanC60 (n = 2, 3) have been synthesized by a liquid phase reaction and investigated with X-ray diffraction (XRD), nuclear magnetic resonance (NMR), electron paramagnetic resonance, and differential thermal analysis. XRD data indicate that the crystal structure of Na2C60 at 300 K is face centered cubic (FCC). A phase transition from primitive cubic to FCC crystal structure has been observed in this work in Na2C60 fulleride at 290 K. The transition is accompanied by the step-like change of paramagnetic susceptibility. The crystal structure of Na3C60 is more complicated than, and different from, what has been reported in the literature. A nearly seven-fold increase of paramagnetic susceptibility with increasing temperature has been observed in the Na3C60 fulleride at 240–260 K. In the same temperature range, a new line at about 255 ppm appears in the 23Na NMR spectrum, indicating a significant increase of electron density near the Na nucleus. The observed effect can be explained by a metal-insulator transition caused by a structural transition.


Sign in / Sign up

Export Citation Format

Share Document