Thermodynamic mechanism for direct alloying of immiscible tungsten and copper at a critical temperature range

2019 ◽  
Vol 774 ◽  
pp. 939-947 ◽  
Author(s):  
Jie Zhang ◽  
Yuan Huang ◽  
Zumin Wang ◽  
Yongchang Liu
1978 ◽  
Vol 56 (9) ◽  
pp. 1140-1141 ◽  
Author(s):  
P. Palffy-Muhoray ◽  
D. Balzarini

The index of refraction at 6328 Å has been measured for germane in the density range 0.15 to 0.9 g/cm3. The temperature and density ranges over which measurements are made are near the coexistence curve. The coefficient in the Lorenz–Lorentz expression, [Formula: see text], is constant to within 0.5% within experimental error for the temperature range and density range studied. The coefficient is slightly higher near the critical density. The critical density is measured to be 0.503 g/cm3. The critical temperature is measured to be 38.92 °C.


Experiments in this and other countries on the preservation of spermatozoa at very low temperatures have shown that no mammalian spermatozoa so far examined survive freezing when they are cooled ultra-rapidly from temperatures above freezing point to temperatures of — 79° C or below. Slow cooling and the addition of glycerol to the media in which the spermatozoa are suspended, however, permits survival of the spermatozoa of many species. In different animals, there are marked variations in the resistance of their spermatozoa to freezing and the proportion of spermatozoa which can be revived from very low temperatures may be influenced both by the concentration of glycerol added to the semen and by the composition of the diluting fluid. In experiments with the spermatozoa of the bull, ram, stallion and boar it has been found that during slow cooling to — 79° C there is a critical temperature range between — 15 and — 25° C at which the greatest amount of damage occurs. The rate at which the capacity for motility of the spermatozoa is destroyed within this critical temperature range is considerably reduced by allowing the spermatozoa to stand at 2° C in contact with a medium containing egg yolk and glycerol for 18 h before freezing. The extent of damage in the critical temperature range may also be reduced by cooling the specimens at a rate of 0-25 to 0-5° per second between —15 and —25° C.


1951 ◽  
Vol 29 (3) ◽  
pp. 243-252 ◽  
Author(s):  
W. G. Schneider

The velocity and absorption of ultrasound (600 kc.) has been measured throughout the critical temperature region of sulphur hexafluoride. Measurements were carried out for the coexisting liquid phase and vapor phase below Tc, and for the supercritical gas, and simultaneously, observations of the meniscus behavior in the neighborhood of Tc were made. The sound velocity for both liquid and vapor phases below Tc decreased with increasing temperature and became equal at Tc, the velocity at this point being 121.5 m. per sec. In the temperature range from 0.6° below Tc to Tc the velocity in the vapor was greater than that in the liquid. A very high absorption of sound was observed, having a maximum value at Tc and extending over a temperature range of approximately 1°. In the temperature range from Tc to 0.6° below Tc, the absorption in the liquid phase was greater than that in the vapour.


2009 ◽  
Vol 23 (31) ◽  
pp. 5779-5788
Author(s):  
S. R. GHORBANI ◽  
F. ABRINAEY

The transport properties of sintered samples of NdBa 2-x La x Cu 3 O 7-δ with 0 ≤ x ≤ 0.3 have been studied in the normal state by Hall effect measurements. The Hall coefficient, RH is positive in the normal state and increases with increasing La doping concentration over the whole temperature range from the critical temperature, Tc, up to room temperature. The results for the Hall coefficient as a function of temperature and doping concentration were analyzed within the phenomenological narrow band and Anderson models. A good agreement between models and data was obtained. As in the phenomenological narrow band model, the band widths increase with increasing doping concentration. As in the Anderson model, the Hall angle is proportional to T2 over the whole measured temperature range for all samples. The obtained results for both models supported the view that La doping introduces electronic disorder into the CuO 2 planes. The tendency towards localization is driven by electronic disorder. In addition to hole filling, the localization is another reason for the decreasing superconducting critical temperature in these samples.


1933 ◽  
Vol 9 (5) ◽  
pp. 419-423 ◽  
Author(s):  
J. Marsden ◽  
A. C. Cuthbertson

This paper presents the results of the measurement of the vapor pressure of vinyl acetate, over the temperature range from 0 °C. to the normal boiling point. The determinations were carried out on vacuum distilled samples with an isoteniscope, differing slightly in detail from that used by Smith and Menzies(7).The normal boiling point is 72.5 °C. The molecular heat of evaporation has been found to be 8211 calories. The equation which represents the results is[Formula: see text]Trouton's constant and the critical temperature have been found to be 23.8 and 228.3 °C.


2021 ◽  
Author(s):  
Amin Alibakhshi ◽  
Bernd Hartke

Temperature dependence of vaporization enthalpy is one of the most important thermophysical properties of compounds. In the present study, we theoretically developed relationships applicable to evaluation of vaporization enthalpy of compounds from diverse chemical families for a wide temperature range from melting point to the critical temperature. One outcome of the proposed approach is a relationship describing the correlation between the surface tension and vaporization enthalpy which outperforms the extensively applied Kabo method proposed for the same purpose.<br>


1935 ◽  
Vol 13b (3) ◽  
pp. 133-139 ◽  
Author(s):  
J. Edwards ◽  
O. Maass

The sorption of dimethyl ether on alumina has been investigated at pressures from 0.5 to 52 atm., the critical pressure, over the temperature range 25–135 °C. The results are comparable to those for the propylene–alumina system. No discontinuity in the sorption accompanies the transition of sorbate from vapor to gas at the critical temperature; this differs from the previous results for the liquid-to-gas change. The initial stages of the sorption involve the formation of a monomolecular layer followed, with increasing pressure, by a multimolecular layer of increasing depth. It is unlikely that condensation to liquid occurs in the pores except at high relative pressures. The increase in critical temperature of such a liquid must be exceedingly great to account for the continuous form of the isobars up to 135 °C.


1970 ◽  
Vol 55 (1) ◽  
pp. 104-118 ◽  
Author(s):  
Rita Guttman ◽  
Robert Barnhill

Space-clamped squid axons treated with low calcium and computed Hodgkin-Huxley (HH) axons were stimulated by steps of superthreshold current from 101 to 400% of the rheobasic value over a temperature range of 5–27°C. The natural frequency of sustained repetitive firing of real and computed axons depended weakly upon stimulus intensity and strongly upon temperature, with a Q10 of 2.7 (experimental) and 2.6 (computed). For real axons, but not the computed axon, the intervals between the first two spikes were shorter than between subsequent spikes. Constant spike frequencies from 75 Hz at low intensities and temperatures to 330 Hz at high intensities and temperatures were soon achieved. Subthreshold and superthreshold responses were sometimes intermixed in a train of responses from a real axon responding to a constant step of current, but not predicted by HH. The time interval following a spike was always longer than that following a subthreshold oscillation in slightly decalcified real axons, as Huxley and FitzHugh also found for computed axons. There was a bias toward spikes at the beginning of the train and toward subthreshold responses later on. Some repeated patterns were found, every second, third, or fourth response being a spike. Neither the HH equations nor the computed or experimental threshold behaviors show a critical temperature to support a membrane phase transition.


Sign in / Sign up

Export Citation Format

Share Document