Investigating bulk mechanical properties on a micro-scale: Micro-tensile testing of ultrafine grained Ni–SiC composite to determine its fracture mechanism and strain rate sensitivity

2020 ◽  
Vol 817 ◽  
pp. 152774
Author(s):  
Alan Xu ◽  
Chao Yang ◽  
Gordon Thorogood ◽  
Dhriti Bhattacharyya
2006 ◽  
Vol 503-504 ◽  
pp. 31-36 ◽  
Author(s):  
Johannes Mueller ◽  
Karsten Durst ◽  
Dorothea Amberger ◽  
Matthias Göken

The mechanical properties of ultrafine-grained metals processed by equal channel angular pressing is investigated by nanoindentations in comparison with measurements on nanocrystalline nickel with a grain size between 20 and 400 nm produced by pulsed electrodeposition. Besides hardness and Young’s modulus measurements, the nanoindentation method allows also controlled experiments on the strain rate sensitivity, which are discussed in detail in this paper. Nanoindentation measurements can be performed at indentation strain rates between 10-3 s-1 and 0.1 s-1. Nanocrystalline and ultrafine-grained fcc metals as Al and Ni show a significant strain rate sensitivity at room temperature in comparison with conventional grain sized materials. In ultrafine-grained bcc Fe the strain rate sensitivity does not change significantly after severe plastic deformation. Inelastic effects are found during repeated unloading-loading experiments in nanoindentations.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 344 ◽  
Author(s):  
Simon Sevsek ◽  
Christian Haase ◽  
Wolfgang Bleck

The strain-rate-dependent deformation behavior of an intercritically annealed X6MnAl12-3 medium-manganese steel was analyzed with respect to the mechanical properties, activation of deformation-induced martensitic phase transformation, and strain localization behavior. Intercritical annealing at 675 °C for 2 h led to an ultrafine-grained multi-phase microstructure with 45% of mostly equiaxed, recrystallized austenite and 55% ferrite or recovered, lamellar martensite. In-situ digital image correlation methods during tensile tests revealed strain localization behavior during the discontinuous elastic-plastic transition, which was due to the localization of strain in the softer austenite in the early stages of plastic deformation. The dependence of the macroscopic mechanical properties on the strain rate is due to the strain-rate sensitivity of the microscopic deformation behavior. On the one hand, the deformation-induced phase transformation of austenite to martensite showed a clear strain-rate dependency and was partially suppressed at very low and very high strain rates. On the other hand, the strain-rate-dependent relative strength of ferrite and martensite compared to austenite influenced the strain partitioning during plastic deformation, and subsequently, the work-hardening rate. As a result, the tested X6MnAl12-3 medium-manganese steel showed a negative strain-rate sensitivity at very low to medium strain rates and a positive strain-rate sensitivity at medium to high strain rates.


2020 ◽  
Vol 4 (3) ◽  
pp. 110
Author(s):  
Sujan Debnath ◽  
Tan Ke Khieng ◽  
Mahmood Anwar ◽  
Animesh Kumar Basak ◽  
Alokesh Pramanik

Viscoelastic materials, such as natural fibre-reinforced polymer composites, are strain rate sensitive. In the present investigation, the low strain rate sensitivity (0.00028 s−1, 0.00085 s−1 and 0.0017 s−1) of different sized bagasse particle-reinforced (212 µm and 300 µm) epoxy composites was examined using the Weibull analysis method. The filler loading content was optimized at 2 wt.% to achieve better mechanical properties. Based on the experimental results, it was observed that composites with 212 µm filler particles had higher characteristic strengths, more consistent failure strengths and higher energy absorption properties with higher loading speeds, compared to that of 300 µm filler particles. Based on the mathematical models for particle–matrix interactions, improvements in mechanical properties are attributed to proper filler dispersion and a better fibre–matrix interfacial strength.


2010 ◽  
Vol 667-669 ◽  
pp. 707-712 ◽  
Author(s):  
Xiao Yan Liu ◽  
Xi Cheng Zhao ◽  
Xi Rong Yang

Ultrafine-grained (UFG) commercially pure (CP) Ti with a grain size of about 200 nm was produced by ECAP up to 8 passes using route BC at room temperature. For ECAP processing a proper die set was designed and constructed with an internal channel angle Φ of 120° and an outer arc of curvature Ψ of 20°. Strain rate sensitivity of UFG CP-Ti and CG CP-Ti were investigated by compression tests in the temperature range of 298~673K and strain rate range of 10-4~100s-1 using Gleeble simulator machine. Evolution of the microstructure during compression testing was observed using optical microscopy (OM) and transmission electron microscopy (TEM). Strain rate sensitivity value m of the UFG CP-Ti has been measured and is found to increase with increasing temperature and decreasing strain rate, and is enhanced compared to that of CG CP-Ti. Result of the deformation activation energy determination of UFG CP-Ti indicates that the deformation mechanism in UFG CP-Ti is correlated to the grain boundaries.


Energies ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 2105 ◽  
Author(s):  
Alon Ratner ◽  
Richard Beaumont ◽  
Iain Masters

Strain rate sensitivity has been widely recognized as a significant feature of the dynamic mechanical properties of lithium-ion cells, which are important for their accurate representation in automotive crash simulations. This research sought to improve the precision with which dynamic mechanical properties can be determined from drop tower impact testing through the use of a diaphragm to minimize transient shock loads and to constrain off-axis motion of the indenter, specialized impact absorbers to reduce noise, and observation of displacement with a high speed camera. Inert pouch cells showed strain rate sensitivity in an increased stiffness during impact tests that was consistent with the poromechanical interaction of the porous structure of the jellyroll with the liquid electrolyte. The impact behaviour of the inert pouch cells was similar to that of an Expanded Polypropylene foam (EPP), with the exception that the inert pouch cells did not show hysteretic recovery under the weight of the indenter. This suggests that the dynamic mechanical behaviour of the inert pouch cells is analogous to a highly damped foam.


2001 ◽  
Author(s):  
Paul S. Robinson ◽  
Tony W. Lin ◽  
Paul R. Reynolds ◽  
Kathleen A. Derwin ◽  
Renato V. Iozzo ◽  
...  

Abstract Little is known about the contributions of specific extracellular matrix components of tendon to the tissue’s mechanical properties. Type I collagen, given its abundance and association into long fibrils, is thought to dominate the elastic properties of tendon. Proteoglycans (PGs) are believed to provide elasticity through their potential role in transferring stress between discontinuous fibrils, as well as viscoelasticity via their interaction with water. Previous studies suggest relationships between collagen or PGs and tissue mechanics [1,2]. However, no study to date has isolated the contributions that distinct tendon components make to the elastic and viscoelastic properties of tendon. Recently, transgenic mice with prescribed mutations or deletions of various genes for specific tendon constituents have become available. In this study, we use transgenic mice as a tool to investigate the contributions of tendon components to tendon function based on a previously described approach [3]. In particular, we compare the strain rate sensitivity among fascicles from the tails of mice described in Table 1. We hypothesize that (a) fascicles with alterations in type I collagen (C1TJ8 and C1M8) will have different elastic properties but no difference in strain rate sensitivity than age-matched controls (CTL8), and (b) fascicles with alterations in proteoglycan (DKO8 and CTL3 [4]) will have different elastic properties and different strain rate sensitivity than CTL8 fascicles.


Sign in / Sign up

Export Citation Format

Share Document