High-performance supercapacitor based on graphene oxide through in-situ polymerization and co-precipitation method

2020 ◽  
Vol 829 ◽  
pp. 154536 ◽  
Author(s):  
Chengxiang Huang ◽  
Chenghao Ni ◽  
Lingze Yang ◽  
Tiantian Zhou ◽  
Chen Hao ◽  
...  
2015 ◽  
Vol 44 (43) ◽  
pp. 18737-18742 ◽  
Author(s):  
Guoxin Gao ◽  
Shiyao Lu ◽  
Yang Xiang ◽  
Bitao Dong ◽  
Wei Yan ◽  
...  

Free-standing ultrathin CoMn2O4 nanosheets are successfully assembled on reduced graphene oxide via a simple trisodium citrate (TSC) assisted co-precipitation method with a post-annealing treatment.


RSC Advances ◽  
2018 ◽  
Vol 8 (49) ◽  
pp. 27725-27739 ◽  
Author(s):  
Madhurya Chandel ◽  
Debabrata Moitra ◽  
Priyanka Makkar ◽  
Harshit Sinha ◽  
Harshdeep Singh Hora ◽  
...  

Here, we report an ‘in situ’ co-precipitation reduction based synthetic methodology to prepare CuFe2O4 nanoparticle–reduced graphene oxide (CuFe2O4–RGO) nanocomposites.


2011 ◽  
Vol 410 ◽  
pp. 164-167 ◽  
Author(s):  
Balakrushna Sahu ◽  
G. Pugazhenthi

PS/LDH nanocomposites were synthesized via in-situ polymerization technique using styrene monomer with toluene as a solvent. A series of LDHs (Mg-Al, Co-Al, Ni-Al, Cu-Al, Cu-Fe and Cu-Cr LDHs) was first prepared from their nitrate salts by co-precipitation method. The above prepared, pristine LDHs were organically modified using sodium dodecyl sulfate (SDS) to obtain organomodified LDHs (OLDH). Then, PS nanocomposites containing 5 wt.% OLDHs were prepared by in-situ polymerization method. The structural and thermal properties of LDHs and corresponding nanocomposites were characterized by X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA). The absence of OLDH peak (003) in the XRD patterns of PS/OLDH nanocomposite confirms the formation of exfoliated nanocomposites. The presence of sulfate groups in the modified LDHs is confirmed by FTIR analysis. The appearance of new peaks in the FTIR spectra in the region of 3400-3500 cm-1, 1670-1680 cm-1and 1200-1260 cm-1for O-H stretching, H-O-H vibration and stretching vibration of sulfate, respectively indicate the existence of LDHs in the PS/OLDH nanocomposites. The entire exfoliated PS/OLDH nanocomposites exhibit enhanced thermal stability relative to the pure PS. When 50% weight loss is selected as point of comparison, the decomposition temperature of nanocomposites is about 3-5oC higher than that of pure PS.


RSC Advances ◽  
2016 ◽  
Vol 6 (80) ◽  
pp. 76759-76772 ◽  
Author(s):  
Debabrata Moitra ◽  
Madhurya Chandel ◽  
Barun Kumar Ghosh ◽  
Raj Kumar Jani ◽  
Manoj Kumar Patra ◽  
...  

Here, an ‘in situ’ co-precipitation reaction method has been reported for the preparation of CoFe2O4–RGO (CF–RGO) nanocomposites.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1032 ◽  
Author(s):  
José Antonio Luceño Sánchez ◽  
Ana Maria Díez-Pascual ◽  
Rafael Peña Capilla ◽  
Pilar García Díaz

Conducting polymers like polyaniline (PANI) have gained a lot of interest due to their outstanding electrical and optoelectronic properties combined with their low cost and easy synthesis. To further exploit the performance of PANI, carbon-based nanomaterials like graphene, graphene oxide (GO) and their derivatives can be incorporated in a PANI matrix. In this study, hexamethylene diisocyanate-modified GO (HDI-GO) nanosheets with two different functionalization degrees have been used as nanofillers to develop high-performance PANI/HDI-GO nanocomposites via in situ polymerization of aniline in the presence of HDI-GO followed by ultrasonication and solution casting. The influence of the HDI-GO concentration and functionalization degree on the nanocomposite properties has been examined by scanning electron microscopy (SEM), Raman spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), tensile tests, zeta potential and four-point probe measurements. SEM analysis demonstrated a homogenous dispersion of the HDI-GO nanosheets that were coated by the matrix particles during the in situ polymerization. Raman spectra revealed the existence of very strong PANI-HDI-GO interactions via π-π stacking, H-bonding, and hydrophobic and electrostatic charge-transfer complexes. A steady enhancement in thermal stability and electrical conductivity was found with increasing nanofiller concentration, the improvements being higher with increasing HDI-GO functionalization level. The nanocomposites showed a very good combination of rigidity, strength, ductility and toughness, and the best equilibrium of properties was attained at 5 wt % HDI-GO. The method developed herein opens up a versatile route to prepare multifunctional graphene-based nanocomposites with conductive polymers for a broad range of applications including flexible electronics and organic solar cells.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1546
Author(s):  
Yueqin Li ◽  
Zongbiao Xia ◽  
Qiang Gong ◽  
Xiaohui Liu ◽  
Yong Yang ◽  
...  

The cellulose/graphene oxide (GO) networks as the scaffold of free-standing aerogel electrodes are developed by using lithium bromide aqueous solution, as the solvent, to ensure the complete dissolution of cotton linter pulp and well dispersion/reduction of GO nanosheets. Polyaniline (PANI) nanoclusters are then coated onto cellulose/GO networks via in-situ polymerization of aniline monomers. By optimized weight ratio of GO and PANI, the ternary cellulose/GO3.5/PANI aerogel film exhibits well-defined three-dimensional porous structures and high conductivity of 1.15 S/cm, which contributes to its high areal specific capacitance of 1218 mF/cm2 at the current density of 1.0 mA/cm2. Utilizing this cellulose/GO3.5/PANI aerogel film as electrodes in a symmetric configuration supercapacitor can result in an outstanding energy density as high as 258.2 µWh/cm2 at a power density of 1201.4 µW/cm2. Moreover, the device can maintain nearly constant capacitance under different bending deformations, suggesting its promising applications in flexible electronics.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4021
Author(s):  
Andrés Esteban Cerón Cerón Cortés ◽  
Anja Dosen ◽  
Victoria L. Blair ◽  
Michel B. Johnson ◽  
Mary Anne White ◽  
...  

Materials from theA2M3O12 family are known for their extensive chemical versatility while preserving the polyhedral-corner-shared orthorhombic crystal system, as well as for their consequent unusual thermal expansion, varying from negative and near-zero to slightly positive. The rarest are near-zero thermal expansion materials, which are of paramount importance in thermal shock resistance applications. Ceramic materials with chemistry Al2−xInxW3O12 (x = 0.2–1.0) were synthesized using a modified reverse-strike co-precipitation method and prepared into solid specimens using traditional ceramic sintering. The resulting materials were characterized by X-ray powder diffraction (ambient and in situ high temperatures), differential scanning calorimetry and dilatometry to delineate thermal expansion, phase transitions and crystal structures. It was found that the x = 0.2 composition had the lowest thermal expansion, 1.88 × 10−6 K−1, which was still higher than the end member Al2W3O12 for the chemical series. Furthermore, the AlInW3O12 was monoclinic phase at room temperature and transformed to the orthorhombic form at ca. 200 °C, in contrast with previous reports. Interestingly, the x = 0.2, x = 0.4 and x = 0.7 materials did not exhibit the expected orthorhombic-to-monoclinic phase transition as observed for the other compositions, and hence did not follow the expected Vegard-like relationship associated with the electronegativity rule. Overall, compositions within the Al2−xInxW3O12 family should not be considered candidates for high thermal shock applications that would require near-zero thermal expansion properties.


Sign in / Sign up

Export Citation Format

Share Document