Tailoring damping properties by electron irradiation in Ni-Mn-Ga shape memory alloys in a wide high-temperature range

2020 ◽  
pp. 158557
Author(s):  
Rui Ning ◽  
Yundong Zhao ◽  
Sibo Sun ◽  
Zhiyong Gao ◽  
Wei Cai
2013 ◽  
Vol 738-739 ◽  
pp. 506-511 ◽  
Author(s):  
Gennady E. Monastyrsky ◽  
Patrick Ochin ◽  
Valery V. Odnosum ◽  
Alexander Yu. Pasko ◽  
Victor I. Kolomytsev ◽  
...  

In alloys Ni–39(41)Al–xPt (x = 5,10,15,20 at.%) the alloying by Pt strongly increases the Ms point. There is no direct proportionality between the Pt content and the Ms point increasing. No traces of Ni3Al were found in the alloys. The precipitation of Ni5Al3was observed in Ni–39Al–15Pt alloy after cycling through the temperature range between the room temperature and 800°C. The effect of Pt alloying on the martensitic transformation and high temperature martensitic transformation stability is governed by the competition between the martensitic transformation and formation of the Ni5Al3phase upon the cooling. Pt addition, instead of Ni, can resolve the problem of decomposition processes because the alloy composition is shifted out of the Ni3Al domain on the phase diagram and it reduces the influence of the Ni5Al3phase on the degradation of martensitic transformation.


2020 ◽  
Vol 794 ◽  
pp. 139857 ◽  
Author(s):  
O. Karakoc ◽  
K.C. Atli ◽  
A. Evirgen ◽  
J. Pons ◽  
R. Santamarta ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 581
Author(s):  
Abdulhakim A. Almajid

This study is focused on the deformation mechanism and behavior of naturally aged 7010 aluminum alloy at elevated temperatures. The specimens were naturally aged for 60 days to reach a saturated hardness state. High-temperature tensile tests for the naturally aged sample were conducted at different temperatures of 573, 623, 673, and 723 K at various strain rates ranging from 5 × 10−5 to 10−2 s−1. The dependency of stress on the strain rate showed a stress exponent, n, of ~6.5 for the low two temperatures and ~4.5 for the high two temperatures. The apparent activation energies of 290 and 165 kJ/mol are observed at the low, and high-temperature range, respectively. These values of activation energies are greater than those of solute/solvent self-diffusion. The stress exponents, n, and activation energy observed are rather high and this indicates the presence of threshold stress. This behavior occurred as a result of the dislocation interaction with the second phase particles that are existed in the alloy at the testing temperatures. The threshold stress decreases in an exponential manner as temperature increases. The true activation energy was computed by incorporating the threshold stress in the power-law relation between the stress and the strain. The magnitude of the true activation energy, Qt dropped to 234 and 102 kJ/mol at the low and high-temperature range, respectively. These values are close to that of diffusion of Zinc in Aluminum and diffusion of Magnesium in Aluminum, respectively. The Zener–Hollomon parameter for the alloy was developed as a function of effective stress. The data in each region (low and high-temperature region) coalescence in a segment line in each region.


Metals ◽  
2017 ◽  
Vol 7 (11) ◽  
pp. 511 ◽  
Author(s):  
Matthew Carl ◽  
Jesse Smith ◽  
Brian Van Doren ◽  
Marcus Young

2020 ◽  
Vol 9 (5) ◽  
pp. 9972-9984 ◽  
Author(s):  
I. López-Ferreño ◽  
J.F. Gómez-Cortés ◽  
T. Breczewski ◽  
I. Ruiz-Larrea ◽  
M.L. Nó ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document