Martensitic Transformation in Ni-Al-Pt High Temperature Shape Memory Alloys

2013 ◽  
Vol 738-739 ◽  
pp. 506-511 ◽  
Author(s):  
Gennady E. Monastyrsky ◽  
Patrick Ochin ◽  
Valery V. Odnosum ◽  
Alexander Yu. Pasko ◽  
Victor I. Kolomytsev ◽  
...  

In alloys Ni–39(41)Al–xPt (x = 5,10,15,20 at.%) the alloying by Pt strongly increases the Ms point. There is no direct proportionality between the Pt content and the Ms point increasing. No traces of Ni3Al were found in the alloys. The precipitation of Ni5Al3was observed in Ni–39Al–15Pt alloy after cycling through the temperature range between the room temperature and 800°C. The effect of Pt alloying on the martensitic transformation and high temperature martensitic transformation stability is governed by the competition between the martensitic transformation and formation of the Ni5Al3phase upon the cooling. Pt addition, instead of Ni, can resolve the problem of decomposition processes because the alloy composition is shifted out of the Ni3Al domain on the phase diagram and it reduces the influence of the Ni5Al3phase on the degradation of martensitic transformation.

2021 ◽  
Vol 1016 ◽  
pp. 1802-1810
Author(s):  
Hiromichi Matsuda ◽  
Masayuki Shimojo ◽  
Hideyuki Murakami ◽  
Yoko Yamabe-Mitarai

As new generation of high-temperature shape memory alloys, high-entropy alloys (HEAs) have been attracted for strong solid-solution hardened alloys due to their severe lattice distortion and sluggish diffusion. TiPd is the one potential high-temperature shape memory alloys because of its high martensitic transformation temperature above 500 °C. As constituent elements, Zr expected solid-solution hardening, Pt expected increase of transformation temperature, Au expected keeping transformation temperature, and Co expected not to form harmful phase. By changing the alloy composition slightly, two HEAs and two medium entropy alloys (MEAs) were prepared. Only two MEAs, Ti45Zr5Pd25Pt20Au5, and Ti45Zr5Pd25Pt20Co5 had the martensitic transformation. The perfect recovery was obtained in Ti45Zr5Pd25Pt20Co5 during the repeated thermal cyclic test, training, under 200 MPa. On the other hand, the small irrecoverable strain was remained in Ti45Zr5Pd25Pt20Au5 during the training under 150 MPa because of the small solid-solution hardening effect. It indicates that Ti45Zr5Pd25Pt20Co5 is the one possible HT-SMA working between 342 and 450 °C.


2014 ◽  
Vol 1019 ◽  
pp. 379-384
Author(s):  
M.P. Mashamaite ◽  
Hasani Rich Chauke ◽  
Rosinah Mahlangu ◽  
P.E. Ngoepe

Shape memory alloys (SMAs) are a fascinating group of metals that have two remarkable properties, the shape memory effect and superelasticity. The TiPt structure with the B2 phase has been reported to undergo a reversible displacive transformation to B19 martensite at about 1200K. However, this system could serve in principle as the basis of high-temperature shape memory alloys. Molecular dynamics study of martensitic transformation in platinum titanium alloys was performed to investigate the effect of temperature dependence on B2 and B19 structures at 50 at.%Pt. The NPT ensemble was used to determine the properties of these systems and we found good comparisons with recent experimental work. The temperature dependence of TiPt shows potential martensitic change when B19 is heated to extreme high temperatures of 273K up to 1573K.


2007 ◽  
Vol 537-538 ◽  
pp. 129-136 ◽  
Author(s):  
Marton Benke ◽  
Valéria Mertinger ◽  
E. Nagy ◽  
Jan Van Humbeeck

The ageing phenomena and its effect on the thermoelastic martensitic transformation was investigated in three Cu-base SMAs. The transformation temperatures shifted to higher temperatures due to aging in the beta-phase. To increase the alloy’s ductility, a definite amount of Mn (4 wt%) and Fe (2 wt%) were added to the ternary alloy. The thermoelastic martensitic transformation was found in the not-aged samples of the CuAlNiMn and CuAlNiMnFe alloys. This transformation was destroyed due to ageing heat treatments by a fairly unknown exothermic process. The thermoelastic martensitic transformation appeared again in the aged CuAlNiMn and CuAlNiMnFe samples after keeping them on room temperature for a few months. This phenomena was investigated by DSC, SEM, TEM, and XRD.


2003 ◽  
Vol 792 ◽  
Author(s):  
X. T. Zu ◽  
F.R. Wan ◽  
S. Zhu ◽  
L. M. Wang

ABSTRACTTiNi shape memory alloy (SMA) has potential applications for nuclear reactors and its phase stability under irradiation is becoming an important topic. Some irradiation-induced diffusion-dependent phase transformations, such as amorphization, have been reported before. In the present work, the behavior of diffusion-independent phase transformation in TiNi SMA was studied by electron irradiation at room temperature. The effect of irradiation on the martensitic transformation of TiNi shape memory alloys was studied by Transmission Electron Microscopy (TEM) with in-situ observation and differential scanning calorimeter (DSC). The results of TEM and DSC measurements show that the microstructure of samples is R phase at room temperature. Electron irradiations were carried out using several different TEM with accelerating voltage of 200 kV, 300 kV, 400 kV and 1000 kV. Also the accelerating voltage in the same TEM was changed to investigate the critical voltage for the effect of irradiation on phase transformation. It was found that a phase transformation occurred under electron irradiation above 320 kV, but never appeared at 300 kV or lower accelerating voltage. Such phase transformation took place in a few seconds of irradiation and was independent of atom diffusion. The mechanism of Electron-irradiation-induced the martensitic transformation due to displacements of atoms from their lattice sites produced by the accelerated electrons.


2015 ◽  
Vol 833 ◽  
pp. 67-70
Author(s):  
Shui Yuan Yang ◽  
Cui Ping Wang ◽  
Yu Su ◽  
Xing Jun Liu

The evolutions of microstructure and phase transformation behavior of Cu-Al-Fe-Nb/Ta high-temperature shape memory alloys under the quenched and aged states were investigated in this study, including Cu-10wt.% Al-6wt.% Fe, Cu-10wt.% Al-4wt.% Fe-2wt.% Nb and Cu-10wt.% Al-4wt.% Fe-2wt.% Ta three types alloys. The obtained results show that after quenching, Cu-10wt.% Al-6wt.% Fe alloy exhibits two-phase microstructure of β′1 martensite + Fe (Al,Cu) phase; Cu-10wt.% Al-4wt.% Fe-2wt.% Nb alloy also has two-phase microstructure of (β′1 + γ′1 martensites) + Nb (Fe,Al,Cu)2 phase; Cu-10wt.% Al-4wt.% Fe-2wt.% Ta alloy is consisted of three-phase of (β′1 + γ′1 martensites) + Fe (Al,Cu,Ta) + Ta2(Al,Cu,Fe)3 phases. However, α (Cu) phase precipitates after aging for three alloys; and Fe (Al,Cu,Nb) phase is also present in Cu-10wt.% Al-4wt.% Fe-2wt.% Nb alloy. All the studied alloys exhibit complicated martensitic transformation behaviors resulted from the existence of two types martensites (β′1 and γ′1).


2007 ◽  
Vol 546-549 ◽  
pp. 2241-2244 ◽  
Author(s):  
Yun Qing Ma ◽  
Cheng Bao Jiang ◽  
Yan Li ◽  
Cui Ping Wang ◽  
Xing Jun Liu

A strong need exists to develop new kinds of high-temperature shape-memory alloys. In this study, two series of CoNiGa alloys with different compositions have been studied to investigate their potentials as high-temperature shape-memory alloys, with regard to their microstructure, crystal structure, and martensitic transformation behavior. Optical observations and X-ray diffractions confirmed that single martensite phase was present for low cobalt samples, and dual phases containing martensite and γ phase were present for high cobalt samples. It was also found that CoNiGa alloys in this study exhibit austenitic transformation temperatures higher than 340°C, showing their great potentials for developing as high-temperature shape-memory alloys.


Sign in / Sign up

Export Citation Format

Share Document