Phase transformations of zircon-type DyVO4 at high pressures up to 36.4 GPa: X-ray diffraction measurements

2021 ◽  
pp. 159926
Author(s):  
Xiaoning Wang ◽  
Baoyun Wang ◽  
Dayong Tan ◽  
Wansheng Xiao ◽  
Maoshuang Song
Author(s):  
Innokenty Kantor ◽  
Alexander Kurnosov ◽  
Catherine McCammon ◽  
Leonid Dubrovinsky

AbstractA high-pressure quasi-single crystal X-ray diffraction study of a synthetic iron oxide Fe


2005 ◽  
Vol 61 (10) ◽  
pp. 2418-2422 ◽  
Author(s):  
Li Chung Ming ◽  
Shiv K. Sharma ◽  
A.J. Jayaraman ◽  
Y. Kobayashi ◽  
E. Suzuki ◽  
...  

1991 ◽  
Vol 246 ◽  
Author(s):  
J.A. Horton ◽  
E.P. George ◽  
C.J. Sparks ◽  
M.Y. Kao ◽  
O.B. Cavin ◽  
...  

AbstractA survey by differential scanning calorimetry (DSC) and recovery during heating of indentations on a series of nickel-aluminum alloys showed that the Ni-36 at.% Al composition has the best potential for a recoverable shape memory effect at temperatures above 100°C. The phase transformations were studied by high temperature transmission electron microscopy (TEM) and by high temperature x-ray diffraction (HTXRD). Quenching from 1200°C resulted in a single phase, fully martensitic structure. The initial quenched-in martensites were found by both TEM and X-ray diffraction to consist of primarily a body centered tetragonal (bct) phase with some body centered orthorhombic (bco) phase present. On the first heating cycle, DSC showed an endothermic peak at 121°C and an exothermic peak at 289°C, and upon cooling a martensite exothermic peak at 115° C. Upon subsequent cycles the 289°C peak disappeared. High temperature X-ray diffraction, with a heating rate of 2°C/min, showed the expected transformation of bct phase to B2 between 100 and 200°C, however the bco phase remained intact. At 400 to 450°C the B2 phase transformed to Ni2Al and Ni5Al3. During TEM heating experiments a dislocation-free martensite transformed reversibly to B2 at temperatures less than 150°C. At higher temperatures (nearly 600°C) 1/3, 1/3, 1/3 reflections from an ω-like phase formed. Upon cooling, the 1/3, 1/3, 1/3 reflections disappeared and a more complicated martensite resulted. Boron additions suppressed intergranular fracture and, as expected, resulted in no ductility improvements. Boron additions and/or hot extrusion encouraged the formation of a superordered bct structure with 1/2, 1/2, 0 reflections.


2005 ◽  
Vol 20 (02) ◽  
pp. 94-96 ◽  
Author(s):  
Thomas N. Blanton ◽  
Swavek Zdzieszynski ◽  
Michael Nicholas ◽  
Scott Misture

1997 ◽  
Vol 34 (6) ◽  
pp. 875-882 ◽  
Author(s):  
Tara L. Hicks ◽  
Richard A. Secco

The dehydration and decomposition of South African pyrophyllite were studied in the pressure range 2.5–5.0 GPa and in the temperature (T) range 295–1473 K using both in situ electrical conductivity measurements and X-ray diffraction studies on the recovered samples. Activation energies for conduction (Qc) vary in the range 0.02–0.07 eV for T ≤ 500 K where the dominant conduction mode is electronic, and Qc is in the range 1.10–1.28 eV for T ≥ 500 K where ionic conduction dominates. Abrupt changes in the isobaric temperature dependence of conductivity mark the onset of dehydration and subsequent decomposition into kyanite plus quartz–coesite. At 2.5 GPa, South African pyrophyllite forms the dehydroxylate phase at 760 K with a pressure dependence of ~30 K/GPa and complete decomposition follows at 1080 K with a pressure dependence of ~41 K/GPa. The resulting pressure–temperature phase diagram is in very good agreement with many previous studies at 1 atm (101.325 kPa).


2020 ◽  
Vol 22 (20) ◽  
pp. 11713-11723 ◽  
Author(s):  
Abhijeet Gaur ◽  
Matthias Stehle ◽  
Kristian Viegaard Raun ◽  
Joachim Thrane ◽  
Anker Degn Jensen ◽  
...  

Combination of in situ multi-edge X-ray absorption spectroscopy at the Mo K- and Fe K-edges in combination with X-ray diffraction successfully uncovered structural dynamics and phase transformations of an iron molybdate catalyst during redox cycling.


Sign in / Sign up

Export Citation Format

Share Document