P4-343: A naturally occurring human IgG specific for oligomeric and fibrillar beta-amyloid: In vitro and in vivo studies

2013 ◽  
Vol 9 ◽  
pp. P857-P857
Author(s):  
Rama Devudu Puligedda ◽  
Yona Levites ◽  
Brian O'Nuallain ◽  
Tomas Ondrejcak ◽  
Pedro Cruz ◽  
...  
Planta Medica ◽  
2018 ◽  
Vol 84 (18) ◽  
pp. 1318-1333 ◽  
Author(s):  
Ligen Lin ◽  
Fayang Zhou ◽  
Shengnan Shen ◽  
Tian Zhang

AbstractLiver fibrosis is a wound-healing response characterized by the accumulation of extracellular matrix following various liver injuries, which results in the deformation of the normal liver architecture and the development of liver cirrhosis and even hepatocellular carcinoma. Numerous in vitro and in vivo studies indicated that oxidative stress mediates the initiation and progression of liver fibrosis. Overaccumulation of reactive oxygen species disrupts macromolecules, induces necrosis and apoptosis of hepatocytes, stimulates the production of pro-fibrogenic mediators, and directly activates hepatic stellate cells, thereby resulting in liver damage and initiating liver fibrosis. Ameliorating oxidative stress is a potential therapeutic strategy for the treatment of liver fibrosis. Natural antioxidants have attracted increasing attention in treating liver fibrosis due to their safety and efficacy. In this review, the pathogenesis of liver fibrosis and the role of oxidative stress in liver fibrosis were discussed. Naturally occurring antioxidants that can treat and prevent liver fibrosis were summarized. Advances in clinical trials were also presented. The main purpose of this review is to provide a comprehensive and up-to-date knowledge from the biological importance of oxidative stress in liver fibrosis to representative antioxidants for treating liver fibrosis. Naturally occurring antioxidants show a potential for further investigations as lead compounds in fighting liver fibrosis.


2020 ◽  
Vol 21 (7) ◽  
pp. 657-680
Author(s):  
Pone Kamdem Boniface ◽  
Ferreira Igne Elizabeth

Background and Objectives: Lymphatic filariasis is a neglected tropical disease caused by infection with filarial worms that are transmitted through mosquito bites. Globally, 120 million people are infected, with nearly 40 million people disfigured and disabled by complications such as severe swelling of the legs (elephantiasis) or scrotum (hydrocele). Current treatments (ivermectin, diethylcarbamazine) have limited effects on adult parasites and produce side effects; therefore, there is an urgent to search for new antifilarial agents. Numerous studies on the antifilarial activity of pure molecules have been reported accross the recent literature. The present study describes the current standings of potent antifilarial compounds against lymphatic filariasis. Methods: A literature search was conducted for naturally occurring and synthetic antifilarial compounds by referencing textbooks and scientific databases (SciFinder, PubMed, Science Direct, Wiley, ACS, SciELO, Google Scholar, and Springer, among others) from their inception until September 2019. Results: Numerous compounds have been reported to exhibit antifilarial acitivity in adult and microfilariae forms of the parasites responsible for lymphatic filariasis. In silico studies of active antifilarial compounds (ligands) showed molecular interactions over the protein targets (trehalose-6-phosphate phosphatase, thymidylate synthase, among others) of lymphatic filariasis, and supported the in vitro results. Conclusion: With reference to in vitro antifilarial studies, there is evidence that natural and synthetic products can serve as basic scaffolds for the development of antifilarial agents. The optimization of the most potent antifilarial compounds can be further performed, followed by their in vivo studies.


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 831 ◽  
Author(s):  
Ching-Shu Lai ◽  
Chi-Tang Ho ◽  
Min-Hsiung Pan

In recent decades, cancer has been one of the leading causes of death worldwide. Despite advances in understanding the molecular basis of tumorigenesis, diagnosis, and clinical therapies, the discovery and development of effective drugs is an active and vital field in cancer research. Tetrahydrocurcumin is a major curcuminoid metabolite of curcumin, naturally occurring in turmeric. The interest in tetrahydrocurcumin research is increasing because it is superior to curcumin in its solubility in water, chemical stability, bioavailability, and anti-oxidative activity. Many in vitro and in vivo studies have revealed that tetrahydrocurcumin exerts anti-cancer effects through various mechanisms, including modulation of oxidative stress, xenobiotic detoxification, inflammation, proliferation, metastasis, programmed cell death, and immunity. Despite the pharmacological similarities between tetrahydrocurcumin and curcumin, the structure of tetrahydrocurcumin determines its distinct and specific molecular mechanism, thus making it a potential candidate for the prevention and treatment of cancers. However, the utility of tetrahydrocurcumin is yet to be evaluated as only limited pharmacokinetic and oral bioavailability studies have been performed. This review summarizes research on the anti-cancer properties of tetrahydrocurcumin and describes its mechanisms of action.


2021 ◽  
Vol 22 (12) ◽  
pp. 6602
Author(s):  
Magdalena Kluska ◽  
Katarzyna Woźniak

Polyphenols are naturally occurring compounds found in abundance in fruits and vegetables. Their health-promoting properties and their use in the prevention and treatment of many human diseases, including cancer, have been known for years. Many anti-cancer drugs are derived from these natural compounds. Etoposide, which is a semi-synthetic derivative of podophyllotoxin, a non-alkaloid lignan isolated from the dried roots and rhizomes of Podophyllum peltatum or Podophyllum emodi (Berberidaceae), is an example of such a compound. In this review, we present data on the effects of polyphenols on the anti-cancer activity of etoposide in in vitro and in vivo studies.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1474
Author(s):  
María Ángeles Martín ◽  
Sonia Ramos

Type 2 diabetes (T2D) and obesity are relevant worldwide chronic diseases. A common complication in both pathologies is the dysregulation of the insulin-signaling pathway that is crucial to maintain an accurate glucose homeostasis. Flavonoids are naturally occurring phenolic compounds abundant in fruits, vegetables and seeds. Rising evidence supports a role for the flavonoids against T2D and obesity, and at present, these compounds are considered as important potential chemopreventive agents. This review summarizes in vitro and in vivo studies providing data related to the effects of flavonoids and flavonoid-rich foods on the modulation of the insulin route during T2D and obesity. Notably, few human studies have evaluated the regulatory effect of these phenolic compounds at molecular level on the insulin pathway. In this context, it is also important to note that the mechanism of action for the flavonoids is not fully characterized and that a proper dosage to obtain a beneficial effect on health has not been defined yet. Further investigations will contribute to solve all these critical challenges and will enable the use of flavonoids to prevent, delay or support the treatment of T2D and obesity.


2001 ◽  
Vol 5 (8) ◽  
pp. 645-651
Author(s):  
M. Peeva ◽  
M. Shopova ◽  
U. Michelsen ◽  
D. Wöhrle ◽  
G. Petrov ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document